
A user driven policy selection model

Mariagrazia Fugini, Pierluigi Plebani, and Filippo Ramoni

Politecnico di Milano, Dipartimento di Elettronica e Informazione
[fugini|plebani|ramoni]@elet.polimi.it

Abstract. This paper introduces a model for expressing quality accord-
ing to both applications and human users perspectives. Such a model,
compliant with the WS-Policy framework, not only mediates between
the application and human user perspectives, but is also capable of con-
sidering the different importance that the user can assign to a quality
dimension. In addition, the paper introduces a policy selection model
based on the adopted quality model. So a human user expresses its re-
quirements according to a high level language and such requirements are
matched against a lower level service quality specification.

1 Introduction

Web service selection plays a crucial role in Service Oriented Computing, since
it is responsible for identifying which is the best Web service among a set of
available Web services with respect to the user needs. It is worth noting that
service selection can be performed by two kind of users: applications and hu-
man being with different perspectives. For example, technical parameters such
as throughput, bandwidth, latency, framerate could be comprehensible by ap-
plications and developers but not by final users: the latter have not skills to
define the quality by technical parameter but they need a set of higher level
dimensions such as video quality and audio quality defined according to discrete
scales such as, for instance, good, average, and worst. The aim of this paper is
twofold. On one hand, it introduces a model for expressing the quality of service
according to both applications and human users perspectives, also considering
the different importance that the user can assign to a given quality dimension.
On the other hand, the paper introduces a policy selection model based on the
adopted quality model. According to this selection model, a human user can
express its requirements according to a high level language and such require-
ments are matched against to the Web service quality specification expressed
through a more technical language. Both models are based on AHP (Analytical
Hierarchical Process) developed by T.L. Saaty [6].

2 Quality dimension model

In the literature 1 several quality models have been proposed. In our opinion they
are able to express the non-functional properties of a service, but they do not
1 see http://www.cs.uni-magdeburg.de/∼ rud/wsqos-links.html

deal with the difference between user and service perspective. In the same way,
not all the quality dimensions have the same importance and such importance
depends on both the application domain and the service users.

The quality of Web service model we propose in this work aims at dealing with
this aspect and it is based on three main elements: a quality dimension model,
a quality of Web service definition model, and a quality evaluation model.

A quality dimension, also known as quality parameter, is a non-functional
aspect related to an entity that we are describing. Thus, the quality dimension
is close to the application domain we are taking into account and it can be
directly measured or estimated starting from other dimensions. We identify two
classes of quality dimensions, namely, primitive and derived. A primitive quality
dimensions (pqd hereafter) is a directly measurable quality dimension and it is
defined as follows:

pqd =< name, values > (1)

– name: uniquely identifies the quality dimension (e.g., framerate, bandwidth).
– values: defines the domain of values of the dimension. The domain can be

either continue (e.g., 0..100) or discrete (e.g., high, medium, low).

On the other hand, a derived quality dimension (dqd hereafter) is not directly
measurable but it depends on other quality dimensions:

dqd =< name, f(pqdi, dqdj) > i = 0..n, j = 0..m (2)

– name: uniquely identifies the quality dimension.
– f(pqdi, dqdj): the dependency function stating the influence of other quality

sub-dimension (both pqd or dqd). The nature of the function may vary from
a simple expression to a composite function.

2.1 Quality of Web Service definition model

Quality of Web service can be defined as the set of quality dimensions which
express the non-functional aspects of a Web service. Due to the strong depen-
dency of a quality dimension of the considered application domain, in our quality
model we include an actor called quality designer that is in charge of collecting
and organizing the relevant quality dimensions. Since the quality designer is a
domain expert, he is also able to state if a quality dimension is primitive or
derived. As stated above a dqd depends on both pqds and dqds, thus the work
of the quality designer results in a tree named quality tree (QT) (see Figure 1):

QT = < dqdQoS , tree nodek > k = 1..p (3)
tree node = [< pqd > | < dqd, v(pqdi, dqdj), w(pqdi, dqdj) >]

i ≤ n, j ≤ m, domain(fdqd) ⊇ domain(g) = domain(w)

A QT refers to a given application domain and it includes and organizes all
the relevant quality dimensions identified by the quality designer. Given a class

Quality of
Service

Video
Quality

Sound
Quality

PriceResolution Framerate Colordepth Encoding Sampling

0.150 0.785 0.065 0.250 0.750

0.480 0.115

0.405
High = res >= 1024x768;
 fr>20;cd>8
Low = res<1024x768;
 fr >= 20;cd <= 8

High: ENC = ALAC, SAM > 128
Medium: ENC = WMA,
 64 <= SAM <= 128
Low: ENC = MP3, SAM < 64

320x320 0.058
800x600 0.207
1024x768 0.735

[10-20] 0.060
[20-25] 0.352
[26-30] 0.586

8 0.041
16 0.155
24 0.396
32 0.406

MP3 0.2
WMA 0.2
ALAC 0.6

[64-128] 0.3
[128-192] 0.7

[0 – 3] 0.75
(3 – 10] 0.25

videoqualityV (res,fr, cd) soundqualityV (enc, sam)

evaluation
functions

pqd

dqd

Fig. 1. Quality tree for video-on-demand Web services

of Web services (e.g.: video-on-demand, flight booking), both service providers
and users will rely on the related QT tree to describe the offered and desired
quality. So, the tree offers a common knowledge for reasoning about quality.

About the structure of a QT, the root is a dqd named QoS, leaves refers
to pqds, and internal nodes are dqds. The function v(pqdi, dqdj) derives from
f(pqdi, dqdj) and returns the value of a dqd with respect to the quality dimen-
sions which the dqd depends on. The domain of f might contain the domain of
v since the quality designer can decide to include in the quality tree only some
of the dependent quality dimensions which usually define a given dqd.

In addition to the function v, a tree node is also specified by a weigth function
w expressing the importance of the quality dimensions which the dqd depends on:
the higher the weight value, the higher the importance of the quality dimension.
The weight assignment is a quite critical activity and we decide to adopt the
AHP (Analytic Hierarchy Process) approach, developed by T.L. Saaty [6], to
perform such an activity. This is a decision-making technique that assigns to
each sub-dimension a score that represents the overall performance with respect
to the different parameters. AHP is suitable for hierarchical structure as QT and
proposes to user some pairwise comparisons between sub-dimensions.

According to this approach, given a dqd the quality designer should fill tables
like the one shown in Table 1. The first column and the first row are populated
with the name of the sub-dimensions influencing the given dqd. For each cell,
the quality designer assigns a number in [19 ..9] range according to the meaning
defined in Table 2 which is the usually adopted one in AHP. About our example,
the eigenvector of the matrix in Table 1 is {0.150; 0.785; 0.065}. This motivates
the values reported in QT of Figure 1.

2.2 Quality evaluation model

In some case, e.g., bandwidth, lower value means lower quality; in some other
cases, e.g., latency, higher value means lower quality. For this reason, nearby
the QT, the quality designer also defines, for each quality dimensions in QT, an

Res FR CD

Resolution 1 1
7

3
Framerate 7 1 9
ColorDepth 1

3
1
9

1
Table 1. Comparison Matrix for
VideoQuality dimension

aij Definition

1 Equal importance
3 Moderate importance
5 Essential or strong importance
7 Demonstrated importance
9 Extreme importance

2, 4, 6, 8 Intermediate values (compromise)
Table 2. The Saaty Pairwise Com-
bination Scale

evaluation function which captures the quality trend with respect to the quality
dimension value.

The evaluation function has different forms with respect to the kind of quality
dimension. In case of pqd, the evaluation function – epqd(values) – is a punctual
function required to state how a quality value is close or far to the best quality
value. Such values can be obtained exploiting the AHP approach.

In case of dqd, the evaluation function – epqd(QT, pqdi, dqdj) – is a linear
combination of the quality dimensions which influence such a dqd according to
the considered QT (i.e., domain(e) = domain(vpqd)). In particular, since the
influencing quality dimensions can be both primitive or derived, the evaluation
function of a dqd will be:

edqd(QT, pqdi, dqdj) =
∑

i=0..n

epqd(pqdi.values) ∗ w(pqdi) + (4)

+
∑

j=0..m

edqd(QT, domain(gdqdi
)) ∗ w(dqdi)

2.3 Policy model

A policy is a document stating the requirements or the offering of a Web service.
Following the quality dimension model, a policy document collects a set of rele-
vant quality dimensions included in a QT and defines the admissible values for
each of them. According to WS-Policy specification and the model introduced
in [5], a policy P can be defined by a set of mutually exclusive alternatives A:

P (QT) =
⊕

k=1..l

Ak(QT) (5)

where an alternative A is defined as a set of assertions a:

Ak(QT) =
∧

pqdi∈QT

a(pqdi) (6)

An assertion a(pqd) is a specialization of a quality dimension with a restricted
admissible value set, i.e., a(pqd) =< pqd.name, values ⊆ pqd.values >.

At the provider side, we have a service policy document SP (QT) (SP here-
after) which specifies the quality of service with respect to several configurations,
i.e. alternatives. At user side we have both a user policy document UP (QT) and
the user quality tree (UQT), a version of QT customized by the user.

Service Policy (SP)
A1: Res = [800x600;1024x768]
 Fr = [10...30]
 Cd = [16..24]
 Price = [0..3]
 Enc = [MP3, WMA]
 Sam = [64-192]
A2: Res = [800x600;1024x768]
 Fr = [20...30]
 Cd = [16..32]
 Price = [0..1]
 Enc = [MP3, WMA]
 Sam = [128-192]

User Policy (UP)
A1: Res = [800x600;1024x768]
 Fr = [20...25]
 Cd = [16..24] (mandatory)
 Price = [1-2]
 SoundQ = medium

User Policy (UP)
A1: Res = [800x600;1024x768]
 Fr = [20...25]
 Cd = [16..24] (mandatory)
 Price = [1-2]
 Enc = WMA
 Sam = [64..128]

Satisfiability
evaluation

Matched Policy (MP)
A1: Res = [800x600;1024x768]
 Fr = [20...25]
 Cd = [16..24]
 Price = [0..3]
 ENC = WMA
 Sam = [64..128]

e_qosA1 = 0.903

(0.207*0.150+0.352*0.785+0.275*0.065) +
(0.750*0.405) +
(0.2*0.250 + 0.3*0.750) =
0.325+0.303+0,275= 0,903

Alternative
ranking

Fig. 2. Example of SP, UP and quality evaluation

3 Policy selection model

Given a user request and a set of Web service policies, the policy selection is
in charge of figuring out the best Web service policy with respect to the user
preferences. The policy selection considers Web services of the same type so, the
related quality tree (QT) can be obtained by the quality designer for the given
application domain.

The selection process starts when an input of type SP , UP and UQT 2 is
received. The process output is a revised policy (RP) where the alternatives
included in SP are sorted from the alternative which best matches the user
requirements to the worst one.

The selection process is composed by two main steps: Satisfiability evaluation
and Alternative ranking. Figure 2 exemplifies the process considering the video-
on-demand scenario.

3.1 Satisfiability evaluation

Given a Ai ∈ SP , the satisfiability evaluation aims at stating if

∀uj ∈ UP,∃si ∈ Ai | si satisfies uj (7)

The operator satisfies considers both the name and the values of a quality
dimensions. About the former:

si satisfies uj ⇒ si.name = uj .name (8)

2 For the sake of simplicity, we only describe the matching between a UP and a single
SP where the latter expresses several configurations. In addition, we assume that
the user does not modify the QT so UQT = QT . The general scenario where a set
of SP s are considered and UQT 6= QT can be simply derived.

Roughly speaking, during this activity, the selection process verifies that, for
all the service requests expressed in UP , there exists at least one of the service
offering assertions which satisfies such a request. This means that all the quality
dimensions included in UP must be included in SP as well. If at least one of
the quality dimensions in UP is not satisfied, then the process considers the
alternative Ai not compliant with respect to the user request.

At the opposite, it might happen that a quality dimension included in the SP
could not be considered in the UP . In this case, the process continues since the
user might be unaware about a quality dimension that the Web service offers.

The operator satisfies also considers the values describing an assertion.
About this analysis, we first need to distinguish between mandatory and non-
mandatory value ranges. If a value range is mandatory then the following defi-
nition holds:

si satisfies uj ⇒ si.value ⊇ uj .value (9)

Instead, if a user defines a non-mandatory value range then:

si satisfies uj ⇒ si.value ∩ uj .value 6= ∅ (10)

The satisfiability evaluation results in a MP (matched policy), a revised
version of SP where the structure remains the same of SP and the value ranges
are redefined according to the user request:

MP =
⊕

Am | (∀Am,∃Ak ∈ SP |
(∀si ∈ Ak, ∃mi ∈ Am |
(mi.name = si.name = uj .name∧
mi.values = si.values ∩ uj .values)))

(11)

3.2 Alternative ranking

The second step of the selection process has to sort the alternatives included
in MP taking into account the importance assigned by the user to the quality
dimensions. So, the inputs of the alternative ranking phase are both MP and
UQT whereas the output is the final policy RP (Ranked Policy).

Similarly to what done during the satisfiability evaluation, RP has the same
structure of MP and is defined as follows:

RP =
⊕

Ar | (∀Ar,∃Am ∈ MP |Ar = Am)∧
(∀Ai, Aj ∈ RP, i < j ⇒
eqosAi(UQT, domain(gqosAi)) ≥ eqosAj (UQT, domain(gqosAj))

(12)
The quality of an alternative that we need to rank is calculating using the

evaluation functions of the assertions composing the alternatives. An alternative
in MP, in fact, is expressed in terms of assertions related to pqd which, in turns,
are the leaves of the quality tree associated to the alternative as well. Actually,

during the quality calculation we do not consider the original quality tree but
UQT , i.e., the version that the user customizes.

quality(A,UQT) = eqos(pqdi) pqdi.name ∈ UQT = ak.name ∈ A (13)

4 Concluding remarks

In this work we have proposed an approach for selecting Web services by analyz-
ing the offered quality. A quality definition and evaluation model are introduced
to allow both Web service providers and users to specify, namely, the offered
and desired quality. Such models also deal with the different levels of details in
expressing quality by these two actors.

Based on this model, the selection process we propose is capable of automati-
cally matching user and provider policies and ranking several quality alternatives
to identify the best Web service. A prototype implementing our approach is un-
der development.

Comparable approaches are given by WSOL [7] and WSLA [2], which provide
some description model which our work can use to express pqd. Focusing on
the selection process, in [4] the dynamics selection of the services is discussed
proposing a solution based on agents, using the Web Services Agent Framework
(WSAF), that includes an ontology for the QoS and a ad-hoc language to specify
quality. The proposed approach only evaluate services with feedback assigned
from the user that have already used the service, and does not consider the
actual users’ needs. In [3], the proposed utility theory uses utility functions to
estimate every quality parameter without any focus on the dynamic creation
and personalization of the dimensions. In our work we have adopted WS-Policy
as policy language; other languages, such as Features and Properties (F&P), are
also available. Different work, like [1], show the substantially equivalence between
the two languages, finding the differences at the syntax level.

References

1. G. Daniels. Comparing Features & Properties and WS-Policy. W3C Workshop on
Constraints and Capabilities for Web Services, 2004.

2. A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Technical Report RC22456(W0205-171), IBM
Research Division, T.J. Watson Research Center, May 2002.

3. S. Lamparter and S. Agarwal. Specification of Policies for Web Service Negotiations.
Semantic Web and Policy Workshop, Galway, November 2005.

4. E. M. Maximilien and M. P. Singh. A Framework and Ontology for Dynamic Web
Services Selection. IEEE Internet Computing, September-October 2004.

5. T. Mikalsen, N. K. Mukhi, P. Plebani, and I. Silva-Lepe. Supporting Policy-driven
behaviors in Web services: Experiences and Issues. ICSOC-04, 2004.

6. T. L. Saaty. The Analytic Hierarchy Process. Mc Graw Hill, New York, 1980.
7. V. Tosic, K. Patel, and B. Pagurek. WSOL - Web Service Offerings Language.

In Web Services, E-Business and the Semantic Web, CAiSE 2002 International
Workshop (WES 2002), Toronto, Canada, May 2002.

