
A Flexible and Semantic-aware Publication
Infrastructure for Web Services

Luciano Baresi, Matteo Miraz, and Pierluigi Plebani

Dipartimento di Elettronica e Informazione – Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

{baresi, miraz, plebani}@elet.polimi.it

Abstract. This paper presents an innovative approach for the publica-
tion and discovery of Web services. The proposal is based on two previous
works: DIRE (DIstributed REgistry), for the user-centered distributed
replication of service-related information, and URBE (UDDI Registry
By Example), for the semantic-aware match making between requests
and available services. The integrated view also exploits USQL (Unified
Service Query Language) to provide users with a higher level and ho-
mogeneous means to interact with the different registries. The proposal
improves background technology in different ways: we integrate USQL
as high-level language to state service requests, widen user notifications
based on URBE semantic matching, and apply URBE match making to
all the facets with which services can be described in DIRE. All these
new concepts are demonstrated on a simple scenario.

1 Introduction

The publication and discovery of Web services [1] have been tackled in several
different ways so far. While the community agrees on WSDL and BPEL, as
description and composition languages, respectively, the efficient and effective
exposition and retrieval of Web services are still open problems. For example,
UDDI [2] and ebXML [3] are probably the two most “famous” registry solu-
tions, proposals based description logics and ontologies [4–6] try to improve
service discovery, while METEOR-S [7] and Pyramid-S [8] integrate registries
and ontologies to offer semantically-enriched service publication and discovery.
The lack of a winning solution pushed us to further analyze the problem and
concentrate on the distributed publication of services as a way to improve both
exposition and retrieval.

Even if all the main registry standards have moved towards distributed ap-
proaches, we think that this distribution cannot be defined a priori. We think
that the information about available services must be moved closer to their pos-
sible users, and this must be done in a user-centric way. Our proposal lets users
fully control their registries (i) by defining what they want to share with the oth-
ers and (ii) by specifying the services potentially available on external registries
they are interested in. Therefore, the paper concentrates on the distributed user-
centered propagation of service information and on the discovery features that

such a distribution enables. The discovery, in particular, is enriched with the
adoption of semantic-aware analysis to improve the responsiveness of the system
and help users with solutions (services) that are close enough to what they would
have liked to get (even if they do not fully match their expectations).

The proposed interaction among registries exploits a publish and subscribe [9]
(P/S, hereafter) communication infrastructure to allow for flexible and dynamic
interactions. This means that each registry can decide the services it wants to
publish, that is, the services it wants to share with the others. Similarly, it can
declare its interests by means of special-purpose subscriptions. The infrastruc-
ture ensures that as soon as a registry publishes the information about one of
its services, this same information is propagated to (and replicated on) all the
registries that had declared their interest. Subscriptions (and unsubscriptions)
can be issued dynamically and thus each registry can accommodate and tailor
its interests (i.e., those of its users) while in operation.

The second key message of the paper is that oftentimes users are not only
interested in services that fully and exactly match their requests, but they would
like to know if there are “similar” solutions, that is, services that suitably adapted
can be used instead of the ones part of the original request. This requirement
is tacked in the paper in two different and orthogonal ways. User requests are
formulated in a technology neutral and high-level query language, called USQL
(Unified Service Query Language, [10]), and are then automatically translated
into subscriptions suitably distributed through the communication infrastruc-
ture. On the other hand, the dispatching is powered with matchmaking capabil-
ities to provide the different registries with semantically-enriched notifications,
that is, information about services whose match with the original request (sub-
scription) is within a given threshold.

The work presented in this paper builds on top of two existing proposals:
DIRE (DIstributed REgistry, [11]), as for the communication framework among
registries and the facet-based [12] description of services, and URBE (UDDI
Registry By Example, [13]), for the matchmaking and semantic awareness. The
integration of the two proposals allows us to consider a semantically-enabled
replication infrastructure that supports different registry technologies (UDDI,
ebXML, and the SeCSE registry1) by means of JAXR (Java API for XML Reg-
istries, [14]).

Besides the obvious integration of the two proposals, the novel contributions
of this paper lie in: (i) the use of USQL as high-level language to state service
requests, along with its automatic translation in terms of subscriptions for the
communication infrastructure, (ii) the widening of notifications based on URBE
semantic matching, and (iii) the extension of the URBE matching to all the
facets with which services can be described.

The rest of the paper is organized as follows. Section 2 introduces an exam-
ple scenario to motivate the proposal presented in the paper, while Section 3
summarizes background technologies. Section 4 describes the proposed infras-

1 http://secse.eng.it

tructure, along with the new features. Section 5 surveys some related proposals
and Section 6 concludes the paper.

2 Example scenario

Even if the UDDI Business Registries by IBM, Microsoft, and SAP are not
operated anymore, alternative “global” Web service registries are still available.
Among the others, XMethods2 and Wsoogle3 are currently used worldwide, host
Web services of any kind, and provide facilities to ease their discovery. Since
the number of available services is always increasing, this section introduces the
approach presented in this paper as a means to better exploit these “global”
registries and increase the effectiveness of service discovery.

The example scenario4 of Fig. 1 assumes the presence of three different
(classes of) users interested in the Web services advertised by these global reg-
istries. The first is a company specialized in software development for healthcare
solutions, which is interested in Web services able to support as many activities
as possible in this application domain. The second is a tour operator willing to
improve its Web site with mash-up services, while the third is a community of
chess players who want to be aware of new opportunities (Web services) to play
chess over the Internet.

Healtcare
SW

developer
company

XMethods.net

wsoogle.com
Touristic
company

Chess
players

community

Internet

servicelist
chess
chessgame
xray
xrayprint
weatherinfo

Public
Service
Registry

servicelist
mychess
zip2code
currExchange
hospitalWS
traintable

Public
Service
Registry

I need a service with this WSDL
<definition>
 ...
 <portType name="zipService">
 ...
 </portType>
 </definition>

<USQLRequest>
 <Where>
 <Service serviceType="WebService GridService">
 <ServiceProvider>
 <name valueIs="contain">xray</name>
 </ServiceProvider>
 <ServiceDomain>
 http://someontologies/healthcare#Healthcare
 </ServiceDomain>
 </Service>
 </Where>
</USQLRequest>

I would like to play
chess on line

Private
Service
Registry

Private
Service
Registry

Private
Service
Registry

I would like to make
my new service

available

Fig. 1. Example scenario.

All these three groups of users decide to run their own local registries and
periodically browse XMethods and Wsoogle to find the services of interest and

2 http://www.xmethods.net
3 http://www.wsoogle.com
4 This example only aims at exemplifying how our approach works; further technical

considerations behind it are outside the scope of the paper.

update their local copies. Each requester is interested in services of different
categories, but also their requirements are stated in different ways. For instance,
on the average, chess players do not know WSDL, and can only express their
requirements using chess- and QoS-related keywords (e.g., chess or free chess
server). In contrast, the software company wants Web services with particular
WSDL interfaces and is also interested in becoming a quality service provider
for its clients.

All these activities are time consuming and the actual results heavily depend
on the ability of who works on service discovery. Automatic ways to feed the
local registries with no need for period updates would definitively ease their
management, and would also help obtain better results (in terms of discovered
services).

Our solution works in this direction. Each registry, be it global or local, must
be connected to the communication infrastructure described in Section 4, and
only has to declare its interests. The infrastructure grabs relevant services as
soon as they become available directly from where they are published (mainly
the two big repositories, in our example). Similarly, when one of the users (e.g.,
the software company) also holds the role of service provider, the infrastruc-
ture automatically publishes the new services onto the infrastructure and they
(immediately) become available for the other interested registries.

Since Web services can be published, updated, and unpublished, the infras-
tructure is also in charge of updating the proprietary replicas as soon as new in-
formation (services) becomes available. In this scenario, all the services published
in the general purpose registries are public by definition, and these registries are
interested in all the public services in the local registries.

3 Background

This section briefly recalls DIRE, URBE, and USQL to provide the reader with
a self-contained paper, and also highlight those elements that will be used in the
next sections.

3.1 DIRE

DIRE5 (DIstributed REgistry, [11]) provides a common service model for het-
erogenous registries and makes them communicate through a P/S middleware.

DIRE is in line with those approaches that tend to unify the service model
(e.g., JAXR and USQL). Business data are rendered by pre-defined elements
called Organizations, Services, and ServiceBindings, with the meaning that these
elements usually assume in existing registries. Technical data are described by
typed Facets, where each facet addresses a particular feature of the service by
using an XML language. StandardFacets characterize recurring features (for ex-
ample the compliance with an abstract interface), and we assume that they

5 http://code.google.com/p/delivery-manager/

are shared among services. SpecificFacets describe the peculiarities of the differ-
ent services (for example, particular SLAs or additional technical information).
Users can attach new facets to services, even if they are not their provider, to
customize the way services are perceived by the different registries (users), and
to let them share this information with the other components attached to the
communication bus.

The communication bus, which is based on a distributed P/S middleware
called ReDS [15], decouples the interactions among components by means of
a dispatcher. Each component can publish its messages on the dispatcher, and
decide the messages it wants to listen to (subscribe/unsubscribe). The dispatcher
forwards (notifies) received messages to all registered components. ReDS filters,
which can both refer to shared standard facets and embed XPath expressions
on the content of specific facets, let the different registries declare their interests
for particular services. The goal is to disseminate the information about services
based on interests and requests, instead of according to predefined rules.

A delivery manager is attached to each registry and acts as facade, that
is, it is the intermediary between the registry and the bus and manages the
information flow in the two directions. The adopted service model is generic
enough to let different vendors create adapters for their registries. The adoption
of the delivery manager does not require modifications to the publication and
discovery processes used by the different users. They keep interacting with the
(local) registry they were used to, but published services are distributed through
the P/S infrastructure, which in turn provides information about the services
published by the others (if they are of interest). In the end, each single registry
is able to notify its users about the new services published in the other registries.

Notice that a registry can connect to the bus and declare its interests at
any time. The infrastructure guarantees that a registry can always retrieve the
information it is interested in by means of lease contracts. The lease period,
which is configurable at run-time, guarantees that the information about services
is re-transmitted periodically. This is also the maximum delay with which a
registry is notified about a service. Moreover, if the description of a service
changes, the lease guarantees that the new data are distributed to all subscribed
registries within the period.

3.2 URBE

URBE6 (UDDI Registry By Example) is an extension of typical UDDI Registries
to support content-based queries, that is, the retrieval of services whose opera-
tions have a given input or output. Users submit the WSDL description of the
requested Web service, and the system returns a ranked list of services whose
signature is similar to the submitted one.

URBE supports service substitutability at both design- and run-time, and
also the top-down design of BPEL processes. Traditional design approaches push
the designer to identify the potential partner services and then design the BPEL

6 http://black.elet.polimi.it/urbe

process by exploiting the previously selected WSDL interfaces (bottom-up ap-
proach). URBE allows the designer to start focusing on the definition of the
process before selecting the Web services that fit it.

URBE’s similarity engine compares WSDL descriptions of Web services. As-
suming that users express their queries using WSDL, this component compares
the submitted WSDL with the WSDL of all the Web services in the registry.
Each comparison relies on function WSDLSim : (wsdlq, wsdlp)→ [0..1], where
the higher the result is, the higher the similarity between the two Web services
is [16]. This value is obtained recursively by analyzing the overall signature, the
operations, and their parameters. For each operation in wsdlq, the similarity
engine finds the operation in wsdlp with maximum similarity. This similarity
depends on the similarity between the operations’ names (calculated by opSim)
and the similarity of their input and output parameters (calculated by parSim).
Finally, the similarity of parameters depends on the similarity of the parame-
ters’ names and their data types. Figure 2 shows a high level overview of the
similarity evaluation process.

wsdlq

wsdlq.
op1

wsdlq.
op2

wsdlq.
op1.in1

wsdlq.
op1.out1

wsdlq.
op2.in1

wsdlq.
op2.in2

wsdlq.
op2.out1

wsdlp

wsdlp.
op1

wsdlp.
op2

wsdlp.
op1.in1

wsdlp.
op1.out1

wsdlp.
op2.in1

wsdlp.
op2.in2

wsdlp.
op2.out1

WSDLSim

opSim

parSim

Fig. 2. Example similarity evaluation.

As a consequence, the similarity between two signatures heavily depends on
the names assigned to the whole services, available operations, and exchanged
parameters. The comparison between terms relies on a term similarity function
termSim : (ti, tj) → [0..1]. This function returns a value that reflects how the
two terms ti and tj are semantically close: 1 if ti and tj are synonym, 0 if they
are antonym.

To achieve this goal, termSim relies on two kind of ontologies: a domain
specific ontology and a general purpose ontology. The first includes terms related
to a given application domain. We assume that this ontology can be built by
domain experts who analyze the terms included in the Web services published
in the registry. The latter includes all the possible terms (at this stage we adopt
Wordnet7).

The domain specific ontology offers more accuracy in the relationships among
terms, while the general purpose one offers wider coverage. This happens because
in a general-purpose ontology, a word may have more that one synset, each
7 http://wordnet.princeton.edu/

corresponding to a different meaning. In contrast, we assume that in a domain-
specific ontology each word has a unique meaning with respect to the domain
itself. URBE can be configured to only use Wordnet to obtain a better coverage,
to only use the domain specific ontology to obtain better precision, and to use
both of them to gain the two advantages contemporarily.

Name similarity depends on the way two names are connected inside the
ontology [17]. If we assume that WSDL descriptions are generated automati-
cally, for example from Java classes, it is possible that the names of operations
and parameters reflect the naming convention usually adopted by programmers:
getData or currencyExhange are more frequent than the simple names directly
included in the ontology. For this reason, if the terms are composite words,
termSim tokenizes the word and returns the average similarity among the terms.

URBE is built on top of a UDDI implementation only for historical reasons,
but the similarity engine has wider applicability —as we will see in Section 4.
Such a module can also be used as a stand-alone component or be embedded in
complex frameworks.

3.3 USQL

USQL (Universal Service Query Language, [10]) is an XML language to express
service requirements in a technology agnostic way. The language allows users to
abstract the particular protocol and details used by the registry, and focus on
what services are supposed to offer. USQL, like SQL in the database world, is
thus a language for searching services understood by different registry vendors.
Its simplicity, expressiveness, and extensibility make USQL a good solution for
both experts and unskilled users. For example, users without technical skills can
search for services provided by certain organizations, while more skilled users
can search for services that offer particular operations.

A dedicated engine translates both the queries from users into the format
imposed by the particular registry, and the responses from registry-dependent
descriptions into a generic service model (GeSMO). This model adopts a layered
structure: the lowest level contains the concepts common to different services,
while higher layers describe properties specific to particular services. This way,
we have an extensible model able to capture different service types (e.g., Web ser-
vices, Grid services, and P2P services) using orthogonal metrics, like semantics,
QoS, trust and security, and management.

USQL queries can exploit syntactic information about Web services, for ex-
ample, their names or the names of the organizations behind them. They can also
embed semantic data that belong to users’ domain knowledge, and QoS elements
to predicate on the non-functional requirements that the service is supposed to
comply with. Obviously, we can easily mix these data to conceive complex and
sophisticated queries to retrieve the services of interest.

The language is based on a simple XML dialect to describe both required ser-
vices and their QoS properties. In particular, there are elements to select services
with a particular name, with a particular service description, or provided by a

particular service provider. As for semantics, USQL supports different taxon-
omy schemes such as the North American Industry Classification System or the
United Nations Standard Products and Services Code System. The user is able
to specify requirements on the operations the service should provide. USQL also
accepts constraints on the desired quality of service in terms of price, availability,
reliability, processing time, and security. These orthogonal aspects fully support
the user to retrieve services with the required functional and non-functional
properties.

For example, if we want a service to send SMS messages, we might think of
different properties. We can specify that interesting services must contain SMS
in their name. We could also exploit their semantic characterization to discover
only services provided by phone companies, or require that the WSDL interface
of the service we want must have a send method that accepts a phone number
and a short message as inputs. Finally we can also say that we are only interested
in cheap services by setting a maximum price.

4 Proposed solution

A set of isolated registries would require interested providers to publish their
services on each registry separately to proficiently advertise them and foster
user awareness. This is exactly why we propose a flexible infrastructure that
takes advantage of DIRE, URBE, and USQL to simplify the way services are
published over a set of registries and ease their retrieval.

Once a new Web service becomes available, this information is not only stored
in the registry used by the provider to publish the new service, but it is also for-
warded to all the other registries interested in the same kind of services. This
way, the provider can reduce the set of target registries to ideally a single one.
In turn, even service retrieval becomes more effective: we move from a scenario
where requesters have to browse different registries to find what they want, to a
scenario where requesters only express their needs once, their requirements are
spread around, and the information about interesting Web services is automat-
ically moved onto their registries.

The proposed infrastrcture is shown in Figure 3. Its core is similar to the one
adopted in DIRE, where a communication bus8 connects all the companies that
own a registry. Generally speaking, every registry can be used to both publish
new Web services and retrieve interesting ones. Each registry is connected to the
bus by means of a delivery manager, which is in charge of the different registry
technologies and also manages the information flow in the two directions.

The first significant addition of this paper is that the communication bus also
relies on an extended version of URBE’s similarity engine for the comparisons
between requests (subscriptions) and available services.

The figure also shows how the proposed solution works with our running
example. For the sake of simplicity, we assume that XMethods and Wsoogle

8 We can easily assume secure and reliable interactions since the P/S communication
infrastructure is in charge of it.

Wsoogle.com

Communication bus

XMethods.net

JAXR
compliant
Registry

DIRE
Delivery
Manager

JAXR
compliant
Registry

DIRE
Delivery
Manager

URBE
Similarity
Engine

DIRE
Dispatcher

Touristic co.Healtcare SW developer co.

UDDI
DIRE

Delivery
Manager

ebXML
DIRE

Delivery
Manager

Chess player community

UDDI
DIRE

Delivery
Manager

Main Web service registries

Web service requesters

Fig. 3. Proposed infrastructure exemplified on the example scenario.

are connected to the communication bus via a delivery manager. Since we are
considering general purpose registries, with a high number of services, the P/S
infrastructure could become the bottleneck of the entire system. If this were the
problem, “thematic” buses (e.g., about games, health, and so on) would help
split the traffic, and therefore manage the performance of the communication
infrastructure. A thematic bus may also be organized around a domain ontology
and, in this case, such an ontology could be used by URBE to compute the
similarity among service interfaces. Said this, the explanation of the approach can
easily consider a single bus without losing any significant detail. In addition, we
also assume that all the three actors (already introduced in Section 2), interested
in new Web services, have a proprietary service registry, along with a delivery
manager properly connected to the communication bus.

The introduction of USQL and URBE aims at (i) affecting the way sub-
scriptions can be expressed and (ii) improving the effectiveness of the filtering
performed by the dispatcher when it has to decide whether to forward the infor-
mation about a new service or not. The next sections illustrate these two aspects
in detail.

4.1 USQL-based subscriptions

This section explains how users can interact with the delivery manager using
USQL. As stated before, the main benefits are the independence of any particular
technology and the openness towards non technical users. Our additional goal is
to leverage these features inside our distributed environment, which means trans-
lating USQL queries into appropriate subscriptions to support service lookup.

Since USQL queries are nothing but verbose XML documents, the presentation
in this section is organized around increasingly complex examples.

Moving back to the scenario of Section 2, let us suppose that the chess
players had discovered an interesting set of services provided by an organiza-
tion called AcmeChess. Now, the community is looking for other services, and
given the good reputation, they would like to know whether there are new
services provided by AcmeChess. For example, if we think of a simple facet
with tag serviceprovider, the filter (i.e., the XPath expression) could be:
//serviceprovider = "AcmeChess".

Another example considers the tourist operator that uses USQL in a smarter
way and exploits the semantic facets. If we assume the existence of a standard
facet that represents a shared taxonomy about travels, we can easily select all
the services related to it. The subscription behind this query would predicate
on the relationship between the standard facet traveling and the various ser-
vices to allow the delivery manager to retrieve all the services in the domain of
interest. Otherwise, if the ontology were more dynamic and lightweight, it could
be embedded into a specific facet used to describe a particular service, and the
filter would be: contains(//service/ontology, "traveling").

The third actor, that is, the health-care software development company, se-
lects services by analyzing the interface they offer. For this reason, the first query
they create analyzes the operations exposed by the different services to select
the ones relevant for their goals. For example, the following USQL query:

<USQL version="1.0" xmlns="urn:sodium:USQL">

<USQLRequest>

<Where>

<Service serviceType="WebService P2PService GridService">

<Operation minDegreeOfMatch="0.75">

<Inputs>

<input>

<type valueIs="contain">integer</type>

<semantics ontologyURI="http://sodium/ontologies/healthcare">

http://sodium/ontologies/healthcare#ssn

</semantics>

</input>

</Inputs>

<Outputs>

<output>

<type valueIs="contain">string</type>

<semantics ontologyURI="http://sodium/ontologies/healthcare">

http://sodium/ontologies/healthcare#surname</semantics>

</output>

</Outputs>

</Operation>

</Service>

</Where>

</USQLRequest>

</USQL>

requires a service that gives the patient’s name knowing his/her social security
number. It also checks that the service only requires an integer, tagged with
taxonomy’s node ssn, and returns a string, tagged with node surname. This
query is transformed into a filter with three parts. The first part is an XPath
that analyses the WSDL facet to check whether there is an operation with an
integer input and a string result. The second part checks whether the input
parameter of the operation refers to taxonomy’s node ssn, while the last part
checks the result of the operation, and controls that it represents a surname.

When the query is issued at run-time, probably generated by an applica-
tion component in charge of replacing a faulty service, the infrastructure must
guarantee exact results (i.e., only retrieve services that can replace a previous
service without human intervention). This is what the standard XPath match-
ing technique provides. When we move the problem at design-time, users create
queries to understand what Web services they can exploit. The results of these
queries are usually not directly plugged in the system and approximate results
better help understand the different alternatives: USQL allows us to specify the
degree of matching, and URBE helps the communication bus retrieve services
that match the approximation.

The health-care development company can also decide to include QoS re-
quirements in its queries. For example, they can decide to only bind to services
with high availability and low processing time. All these elements can easily
be translated into both XPath queries directly, for full matches, and complete
required facets, then passed to URBE for evaluation, for partial matches.

4.2 Similarity-based subscriptions

The extended version of URBE’s semantic matching provides two main func-
tions: termSim, to evaluate the similarity between two terms, and facetSim,
to evaluate the similarity between two facets, which is an extension and gener-
alization of the original match making that was limited to WSDL or SAWSDL
descriptions. The infrastructure we propose exploits these two functions when-
ever users want to move from exact matches to relaxed ones, that is, users are
satisfied even if their requirements are not totally fulfilled.

To notify the publication of a new Web service, the dispatcher was used to
verify that the new description and the subscription had a perfect match. For
example, if the chess player community submits a subscription with an XPath
expression as //service/type="chessgame", their registry will never receive
Web services with a facet whose field type is chess. Since we cannot force all
the actors to use the same terms, we can take advantage of function termSim.
We introduce the clause relaxed[sim], and append it to the XPath expression
included in the subscription, where sim ∈ [0..1] is a threshold that specifies
the minimum admissible similarity. In the example, the subscription could be
//service/type="chessgame"relaxed[0.5] to make the dispatcher notify the
publication of new Web services with termSim(‘chessgame′, ‘chess′) ≥ 0.5. No-
tice that the definition of this similarity threshold is not easy for unskilled users
as the average chess player. For this reason, we assume that the relaxed clauses

can actually be set by transforming a qualitative scale (e.g., high, medium, and
low) into the corresponding threshold values.

Function facetSim can be exploited in case the requester is skilled enough to
know what a facet is (that is, the structure of an XML document used to describe
a service). Thus, the requester wants a Web service that is not only related to a
given type, but it is described in a very particular and technical way. To make
the substitution possible, the substitute Web service has to expose a facet that
is equal to or at least similar to the facet of the failed service.

Since a WSDL description is nothing but a particular facet, a subscription
of the healthcare software company could be //service/wsdl=‘http://www.
hcc.org/x-rayPrinter’relaxed[0.8] where the WSDL corresponds to a Web
service able to print and deliver X-rays to patients. When a company devel-
ops a new service of this kind and publishes it onto one of the general pur-
pose registries, the dispatcher compares its WSDL with the WSDL at http:
//www.hcc.org/x-rayPrinter. If facetSim returns a value greater than 0.8,
the Web service is also published onto the private registry owned by the software
company.

5 Related work

Our proposal can easily be compared with two wide classes of approaches: those
that concentrate on service publication and discovery and those that deal with
term similarity.

As for the first group, Garofalakis et al. in [1] introduce an overview of current
Web service publication and discovery mechanisms and also propose a catego-
rization. Registry technologies support the cooperation among registries, but
they imply that all registries comply with a single standard and the cooperation
needs a set up phase to manually define the information contributed by each
registry. For example, UDDI v.3 [18] extends the replication and distribution
mechanisms offered by the previous versions to support complex and hierarchi-
cal topologies of registries. It also identifies services by means of a unique key
over different registries. The standard only says that different registries can in-
teroperate, but the actual interaction policies must be defined by the developers.
In our approach, the role of the registries and the way in which they cooperate
are clearly defined.

Similarly, ebXML [3] is a family of standards based on XML to provide an
infrastructure to ease the online exchange of commercial information. ebXML
fosters the cooperation among them by means of the idea that groups of registries
share the same commercial interests or are located in the same domain, as the
thematic buses do in our approach. One of such groups can then be seen as a sin-
gle logical entity where all the elements are replicated on the different registries.
With respect to our approach, service retrieval with ebXML registries results
ineffective since users must browse pre-defined taxonomies or submit keywords
to find the desired services.

METEOR-S [7] and PYRAMID-S [8] fall in the family of semantic-aware
approaches for the creation of scalable peer-to-peer infrastructures for the pub-
lication and discovery of services. These works create a federation of registries
using several concrete nodes. Conversely to our approach, the single node become
simply a gateway to the logical registry, ensuring higher availability or better
response time, but loosing its identity. In particular, the usage of a semantic
infrastructure allows for the implementation of different algorithms for the pub-
lication and discovery of services, but it also forbids the complete control over
the registries. The semantic layer imposes too heavy constraints on publication
policies and also on the way federations can evolve dynamically. METEOR-S
only supports UDDI registers, while PYRAMID-S supports both UDDI and
ebXML registries. They adopt ontology-based meta-information to allow a set
of registries to be federated with each registry “specialized” according to one or
more categories it is associated with. This means that the publication of a new
service requires the meta-information needed to categorize the service within the
ontology. Services are discovered by means of semantic templates that give an
abstract characterization of the service and are used to query the ontology and
identify the registries that contain significant information.

Term similarity has been tackled in several different ways [17]. These algo-
rithms usually calculate such a similarity by relying on the relationships between
terms defined in a reference ontology (e.g., is-a, part-of, attribute-of). In con-
trast, we compute similarity between terms according to the approach proposed
by Seco et al. [19], where the authors adapt existing approaches with the assump-
tion that concepts with many hyponyms convey less information than concepts
that have less hyponyms or any at all (i.e, they are leaves in the ontology).

About the similarity between whole signatures, our approach is closely re-
lated to the approaches studied for the retrieval of reusable components [20]. In
this field, as stated by Zaremski and Wing, there are two types of methods to
address this problem: signature matching [21] and specification matching [22].
In particular, signature matching considers two levels of similarity and intro-
duces the exact and relaxed matching of signatures. As for services, Stroulia and
Wang [23] propose an approach that also considers the description field usually
included in WSDL specifications.

6 Conclusions and future work

The paper presents an innovative infrastructure for the distributed publication
of Web services and for their easy retrieval. The proposal leverages previous
experiences of the authors, namely DIRE and URBE, and also other initiatives
(USQL) to provide a holistic solution able to govern the replication of service
information by means of user requests and preferences, and also able to provide
users with partial, but acceptable, solutions whose fitness is defined through
semantic match making techniques. The overall framework provides users with
a wide set of options.

The integrated infrastructure exists as a very first prototype, but more sta-
ble solutions are needed for its deployment in realistic settings and also for a
thorough empirical evaluation of the approach. Both these directions will govern
our future work. The plan is to keep working on a fully functional prototype
implementation and design a complete empirical evaluation of the proposal by
exploiting a distributed set of registries and the usual collections of public Web
services as benchmarks. Such a new prototype will also deal with query opti-
mization and filter maintenance.

Acknowledgments

This work has been supported by the following projects: Tekne (Italian FIRB),
Discorso (Italian FAR), SeCSE (EC IP), and ArtDecò (Italian FIRB).

References

1. Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Contemporary Web
service discovery mechanisms. Journal of Web Engineering 5(3) (2006) 265–290

2. UDDI: Universal Description, Discovery, and Integration. (http://uddi.xml.org)
3. ebXML: Electronic Business using eXtensible Markup Language. (http://www.

ebxml.org/)
4. Martin D. et al. (ed.): OWL-S: Semantic Markup for Web Services. W3C Submis-

sion. http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/ (2004)
5. WSMO Working Group: Web Service Modeling Ontology. (http://www.wsmo.org)
6. Farrel, J., Lausen, H.: Semantic annotations for WSDL and XML schema. http:

//www.w3.org/TR/sawsdl/ (2007)
7. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.:

METEOR-S WSDI: A scalable P2P infrastructure of registries for semantic publi-
cation and discovery of web services. In: Information Technology and Management.
Volume 6. (Jan 2005) 17 – 39

8. Pilioura, T., Kapos, G., Tsalgatidou, A.: PYRAMID-S: A scalable infrastructure
for semantic web services publication and discovery. In: RIDE-DGS 2004 14th Int’l
Workshop on Research Issues on Data Engineering, in conjunction with the IEEE
Conf. on Data Engineering (ICDE 2004). (March 2004)

9. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish / subscribe. ACM Comput. Surveys 35(2) (2003) 114 - 131

10. Tsalgatidou, A., Pantazoglou, M., Athanasopoulos, G.: Specification of the Unified
Service Query Language (USQL). Technical report, (June 2006)

11. Baresi, L., Miraz, M.: A distributed approach for the federation of heterogeneous
registries. In: Proc. 4th International Conference Service-Oriented Computing,
Chicago, IL, USA, December 4-7. (2006) 240 – 251, Lecture Notes in Computer
Science (vol. 4294), Springer Verlag.

12. Sawyer, P.: Specification language definition. Technical Report A1.D2.3, EC
SeCSE Project (2006)

13. Plebani, P., Pernici, B.: Web service retrieval based on signatures and annota-
tions. Technical Report 2007.47, Dipartimento di Elettronica ed Informazione -
Politecnico di Milano (2007)

14. Najmi (ed.), F.: Java API for XML Registries (JAXR). http://java.sun.com/

webservices/jaxr/ (2002)
15. Cugola, G., Picco, G.P.: REDS: a reconfigurable dispatching system. In: Proc. of

the 6th international workshop on Software engineering and middleware. (2006)
9–16

16. Bianchini, D., De Antonellis, V., Pernici, B., Plebani, P.: Ontology-based method-
ology for e-service discovery. Information Systems 31(4-5) (2006) 361–380

17. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet::Similarity - measuring the
relatedness of concepts. In: Proc. National Conf. on Artificial Intelligence, July
25-29, San Jose, California, USA. (2004) 1024–1025

18. Clement, L., Hately, A., von Riegen, C., (eds.), T.R.: Universal Description, Dis-
covery and Integration version 3.0.2. http://uddi.org/pubs/uddi_v3.htm (2004)

19. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for se-
mantic similarity in Wordnet. In: Proc. Eureopean Conf. on Artificial Intelligence
(ECAI’04), Valencia, Spain, August 22-27, IOS Press (2004) 1089–1090

20. Damiani, E., Fugini, M.G., Bellettini, C.: A hierarchy-aware approach to faceted
classification of objected-oriented components. ACM Trans. Softw. Eng. Methodol.
8(3) (1999) 215–262

21. Zaremski, A., Wing, J.: Signature matching: a tool for using software libraries.
ACM Trans. Softw. Eng. Methodol. 4(2) (1995) 146–170

22. Zaremski, A., Wing, J.: Specification matching of software components. ACM
Trans. Softw. Eng. Methodol. 6(4) (1997) 333–369

23. Stroulia, E., Wang, Y.: Structural and semantic matching for assessing Web-service
similarity. Int’l J. Cooperative Inf. Syst. 14(4) (2005) 407–438

