
A GSM-based approach for Monitoring
Cross-Organization Business Processes using

Smart Objects

Luciano Baresi1, Giovanni Meroni1, and Pierluigi Plebani1

Politecnico di Milano – Dipartimento di Elettronica, Informazione e Bioingegneria
Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy

[firstname].[lastname]@polimi.it

Summary. The execution of cross-organization business processes often
implies the exchange of physical goods without necessarily changing the
ownership of such goods. Typical examples are logistic processes where
goods are managed by shipping companies which are not the owner of
the goods. To ensure that these goods are properly handled while the
service is executed, a monitoring system needs to be put in place.
The goal of this paper is to propose a novel approach for monitoring phys-
ical goods while executing cross-organization business processes. The ap-
proach envisions the usage of Smart Objects attached to the physical
goods. To this aim, an extension of the Guard-Stage-Milestone frame-
work is proposed to enable the Smart Objects to monitor the process
execution also considering the limitations of their power and computa-
tional resources.

Key words: Guard-Stage-Milestone framework, Process-aware Smart
Object, Process monitoring

1 Introduction

The exchange of goods in cross-organization business processes does not nec-
essarily imply a change of ownership. Organizations could send goods to other
organizations through a service provided by other organizations. A typical exam-
ple is an order-to-delivery process: a seller company, which wants to send goods
to the final customers, leaves their goods under the responsibility of a shipping
company without transferring the property of these goods. At the same time, the
owner of the goods (that could be either the seller or the receiver) wants to know
how the goods are managed when they are under the responsibility of the ship-
ping company. To this aim, Service Level Agreements (SLAs) are established
among the parties. Although SLAs are commonly used in cross-organization
business processes, the following limitations apply:

– Time consumption: the definition of SLAs is a long process where the quality
of services, terms, conditions, and responsibilities need to be defined.

– Lack of flexibility: once defined, the SLA is valid for a specific service provider.
Changing the provider usually requires the definition of a new SLA. Thus, this



2 Luciano Baresi, Giovanni Meroni, and Pierluigi Plebani

approach is not suitable for highly dynamic environments where parties change
frequently.

– Information hiding: when resources are under the control of the service
provider, the status of the goods are monitored by the provider according
to its capabilities.

– Activity status hiding: the owners of the goods have limited view on what
happens during the execution of the process by the service provider.

The goal of this paper is to investigate how the adoption of Smart Objects
can improve the monitoring of business processes and solve the aforementioned
limitations. The main idea is to equip the goods that move among the parties
with Smart Objects to monitor the status of the goods independently of the
service provider that is in charge of them. To this aim, we propose a framework
based on an extension of the Guard-Stage-Milestone (GSM) notation [2] to model
the external activities that need to be monitored. As the monitored processes
can last for long periods, the proposed approach takes care of the limitations
of Smart Objects (especially in terms of battery life) to maintain a su�cient
quality of the monitoring activity.

The proposed solution enables the design and execution of more flexible
multi-party business processes. The monitoring logic is executed on a Smart
Object attached to monitored goods as defined by the party that owns the re-
source. When the resource is under the control of another party in the business
process, only infrastructural capabilities can be required to that party, as the
monitoring is exclusively under the control of the Smart Object. The resource
owner can check the status of goods during the whole lifecycle by simply con-
necting - if a connection is available - to the Smart Object itself. Moreover, the
Smart Object is able to detect anomalous situations that violate the agreement
and to promptly report the error to the owner.

The rest of this document is structured as follows. Section 2 motivates the
paper by relying on a running example about multi-modal transportation. Sec-
tion 3 highlights the limitations of traditional process modeling notations and
proposes a new one one conceived specifically for Smart Objects. Section 4 pro-
poses our solution to support the monitoring of multi-party business processes.
Section 5 shows a possible application of our solution to the aforementioned
example. Section 6 analyzes the state of the art, and Section 7 concludes the
paper.

2 Processes and Smart Objects

Cross-organization business processes model the dependencies among processes
performed by di↵erent organizations. An example is reported on the left-hand
side of Figure 1: it refers to a manufacturing company that, after completing
the realization of a product, sends it to the customer. To achieve this objective,
the company relies on a shipping company that enacts the related process once
contacted by the manufacturing company.



A GSM-based approach for Monitoring Business Processes 3

Once the goods are under its responsibility, the shipping company has to
monitor how the goods are managed and report to the client if critical situations
occur. What to monitor, and how the communication among the parties occurs,
is properly ruled by a SLA defined in advance. As mentioned in the previous
section, usually the service provider (i.e., the shipping company) is in charge of
monitoring the service execution. From a business process perspective, once the
goods are under the responsibility of the organization that provides the service,
the same organization has to put in place all the tools able to monitor the service
provisioning to comply with the SLA. As a consequence, each service provider
always gives the same structure and type of monitoring information to all its
service consumers, regardless of their specific needs. For instance, the shipping
company can inform the final customer that the goods are about to arrive only
when the truck leaves the warehouse. For some of the clients of the shipping
company, this information is too coarse-grained and a notification to the final
customer is desirable when the truck is in the same city as the final customer.

Another issue concerns the visibility of what happens during service provi-
sioning. Referring to our example, if the shipping process fails, the manufacturing
company could not necessarily be aware of when exactly the problem occurred.
Moreover, it might happen that the shipping company notifies problems with
some delay, and this could a↵ect the recovery mechanisms that the manufac-
turer company could put in place.

S
hi

pp
in

g 
co

.

M
an

uf
ac

tu
rin

g 
co

.
S

hi
pp

in
g 

co
.

M
an

uf
ac

tu
rin

g 
co

.

Send goods

Load goods 
into 

container

Ship to A 
by truck

Deliver to 
costumer
by truck

Delivery
confirmation

Delivery
error

Send delivery 
error

Send delivery 
confirmation

Manage error
Send goods
and smart 

object

Manage error

Ship to B 
by rail

Ship to B 
by sea

Load goods 
into 

container

Ship to A 
by truck

Deliver to 
costumer
by truck

Ship to B 
by rail

Ship to B 
by sea

Fig. 1. As-is (left) and To-be (right) processes that adopt Smart Objects.

The approach proposed in this paper envisions the use of Smart Objects
with the goal of making the relationship among the parties in cross-organization
business processes simpler and more flexible.

A Smart Object is defined as “an autonomous, physical digital object aug-

mented with sensing/actuating, processing, storing, and networking capabili-

ties” [1]. Because of their di↵usion, even in the domain of business processes,
solutions based on Smart Objects are becoming more and more common.

In our approach, we assume that goods that are moving from di↵erent orga-
nizations are equipped with Smart Objects composed of: a computational unit
able to run software, a sensing system, and a communication interface.

The use of Smart Objects permits to move from the situation reported on
the left-hand side of Figure 1 to what is represented on the right-hand side. The



4 Luciano Baresi, Giovanni Meroni, and Pierluigi Plebani

manufacturing company sends the goods along with the Smart Objects that have
been properly configured to track the location of the goods with the required
granularity. By doing so, if the activities composing the shipping company’s pro-
cess are publicly described, the Smart Object will also detect the phase of such a
process that is currently being executed. This way, and assuming that the Smart
Object can communicate via a broadband network, the manufacturer company
can monitor where the goods are, in which status, and in which activity they
are involved. The Smart Object can also identify violations in the process model
and notify them to the user as soon as they happen (provided that a connection
is available). By doing so, possible critical situations can be detected and man-
aged directly by the owner of the goods, without asking the other organization
to set up a specific monitoring infrastructure and to notify errors during the
execution. Note that we may have the problem of having the Smart Object back
once the shipping concludes. However, we decide not to address this problem in
this paper, as it is similar to traditional ones like the management of pallets or
shipping containers in the transportation domain.

The investigation on the adoption of Smart Objects for monitoring goods
has been conducted in this paper by also considering the limitations of this
technology. First of all energy consumption: most of these devices are battery-
powered with limited autonomy and the battery is often di�cult to recharge
or replace. Fortunately, the amount of energy required by the computational
part has dropped significantly in the last years, thus allowing Smart Objects
to last longer and run more sophisticated software. For wireless data transmis-
sion, on the other hand, the reduction of energy requirements has not been as
pronounced. For this reason, the proposed approach aim to increase the bat-
tery life by reducing the communications to the bare minimum. Secondly, the
limitation of available computational resources on Smart Objects also influence
the proposed solution. Monitoring the correct execution of the business process
directly on board is not possible due to the requirements that usually character-
ize a business process management system. However, this paper envisions Smart
Objects whose computational power is equivalent to the one of current Single
Board Computing devices, such as Intel Galileo [?] or BeagleBoard [?].

Pairing a Smart Object with the goods to be monitored could have significant
impact on costs. A cost-benefit model is discussed in [13]. Here the authors
propose a model to estimate the impact of introducing Smart Objects to monitor
the supply chain with respect to the sustained adoption costs and the gain in
productivity. Even though we have not addressed cost related problems yet in
our work, we plan to do so in the future and we will use such a model as a
starting point.

3 Extended Guard-Stage-Milestone

According to our approach, the main task of the Smart Object is to check if
the monitored goods are managed according to the process agreed among the
organizations. Although control-flow modeling languages are suitable for defining



A GSM-based approach for Monitoring Business Processes 5

such an agreement (see Figure 1), the same representation cannot be used to
instruct the Smart Object about the process to be monitored for several reasons.

First of all, if the Smart Object is fed with a control-flow description and an
activity is not executed in the right order, the Smart Object raises an exception
and the rest of the process could be not monitored. On the contrary, monitoring
as to keep going, as the Smart Object could not always be connected and it
could report anomalies in the process execution only at the end of the process
execution.

Secondly, control-flow languages assume the presence of an orchestrator that
explicitly starts the execution of the activities. In our case, the Smart Object
has to autonomously realize when activities start and terminate as a direct and
continuous connection with orchestrator could not exist.

Finally, control-flow languages lack constructs for explicitly defining condi-
tions that detect the incorrect execution of an activity without necessarily im-
plying a termination of such an activity. For example, during the shipping of a
fragile item, the package could be dropped, condition that could cause a damage
that would invalidate the whole process. Knowing exactly which activities were
not correctly executed is critical for identifying responsibilities, and may also be
useful to drive process changes.

Declarative languages, on the other hand, are well suited to our scenario.
In fact, rather than relying on an explicit control flow definition, they mainly
focus on defining which tasks should be performed under certain conditions,
thus o↵ering more flexibility with respect to control-flow languages. For this
reason, the Guard-Stage-Milestone (GSM) [2] declarative notation was adopted
and extended to properly instrument Smart Objects. We chose GSM because,
with respect to other declarative languages, such as Declare [?], it provides con-
structs, namely Guards and Milestones, that explicitly define when an activity,
which is named Stage, should start or end. Boolean formulas, named sentries,
are associated with Guards and Milestones. They define conditions on captured
events and, when they become true, determine the activation of the associated
construct.

Fig. 2. Extended GSM (right) versus standard GSM (left). The Information Model
element, which is part of the standard GSM specifications, is not depicted as our
extension does not make changes to that part.

With respect to the standard definition of GSM, we introduce the following
changes, as shown in Figure 2:

– Guards are divided into Process Flow Guards and Data Flow Guards: Process
Flow Guards define sentries only related to the activation of Data Flow Guards



6 Luciano Baresi, Giovanni Meroni, and Pierluigi Plebani

or Milestones, whereas Data Flow Guards define sentries only on external
events. Defining conditions on both Milestones and data artifacts into the
same sentry is not allowed. Moreover, Process Flow Guards do not determine
the activation of the associated Stage. Instead, they specify which Stages are
expected to start or end before the associated one.
For example, we know that an activity is executed whenever the Smart Object
reaches a precise location. The Smart Object could be aware of the beginning
of such an activity thank to the associated Data Flow Guard. In fact, we can
define a sentry that is triggered whenever the Smart Object’s GPS coordinates
change and are equal to the ones of such a location.

– For each Stage, it is possible to define Fault Loggers: such annotations allow us
to define a sentry which, if true, marks the associated Stage as faulty. However,
despite Milestones, the associated Stage is not closed once Fault Loggers are
triggered. Analogously, Fault Loggers di↵erentiate from invalidating sentries
since they do not cause completed Stages to be started again, and are ignored
once the associated Stage terminates.
For example, during the execution of an activity, we want to make sure that
the Smart Object’s temperature will not exceed 50�C. By defining for such an
activity a Fault Logger with a sentry that is triggered when the temperature
changes and is above 50�C, we ensure that the activity execution will be
successful as such Fault Logger is not triggered.

With these extensions GSM allows us to easily model process specifications
suited for driving process-aware Smart Objects. Process Flow Guards model
the process flow. Based on data gathered by the sensors installed on Smart
Objects, Data Flow Guards define activity start conditions, Milestones activity
end conditions, and Fault Loggers model activity constraints.

4 Process-aware Smart Objects

After introducing our extended GSM for Smart Objects, we can now present the
software architecture deployed on Smart Objects which allows them to monitor
processes. Figure 3 shows its main software components and their relationships.

– Trace Generator : is responsible for analyzing sensor data and external mes-
sages received by the Smart Object. It mainly consists of a Complex Event
Processing (CEP) engine, which compares these data streams with the sen-
tries defined in the process model to detect process events. The output of this
module is a process trace, which records chronological information concerning
the Data Flow Guards, Milestones or Fault Loggers that are triggered by a
specific event.

– Violations Detector : compares the process trace with the process model to de-
tect control flow violations and activity faults. When a connection is available,
it informs the Smart Object’s owner about violations by sending notifications.
A notification cache is also adopted to temporarily store unsent notifications.



A GSM-based approach for Monitoring Business Processes 7

Fig. 3. Smart Object software architecture.

– Model Manager : is responsible for keeping the process model up to date. It
accomplishes such a task by both receiving explicit updates by the process
owners and requesting the process definitions to the involved parties that have
not provided such definitions yet. It is also responsible for notifying changes
on the process model to the other modules.

During process execution, changes in activity states are determined by Data
Flow Guards and Milestones. Process Flow Guards and Fault Loggers, on the
other hand, are used to determine violations on process flow and activity data,
respectively.

Process-aware Smart Objects operate according to a GSM-based process
model, while the agreement among organizations is usually defined by using
a control-flow based model. The following steps must be performed to facilitate
the definition of the GSM-based process model that is then deployed on the
Smart Objects (see Figure 4) 1. The starting points are the control-flow based
process and the to-be-monitored goods.

– Identification of activities. Starting from a standard BPMN process definition,
the user identifies the activities that wants to monitor by the Smart Objects.
By doing so, a view on the main process is created and used as a reference
for the subsequent phases. Such view contains only the portion of the process
definition related to the to-be-monitored activities.

– Generation of extended GSM definition. Starting from the process view of the
previous phase, the system semi-automatically generates the process definition
by using the extended GSM notation. This is made possible by automatically
transforming activities in Stages, activity flows in sentries for the Process Flow
Guards, and gateway conditions in sentries for the Data Flow Guards. An
empty Milestone is also inserted for each activity to allow for the definition
of sentries in Process Flow Guards. The translation rules for the message

1 For the sake of clarity, we assume that BPMN is adopted as control-flow process
modeling language. Anyway, other control-flow languages can be adopted without
a↵ecting the validity of the approach.



8 Luciano Baresi, Giovanni Meroni, and Pierluigi Plebani

Fig. 4. GSM-based Passive Smart Objects integration framework.

flow and process events are currently under investigation. Starting from the
automatically generated model, the user manually enriches it by specifying
sentries for empty milestones and optionally adding additional Data Flow
Guards and Fault Loggers. The resulting GSM schema will be deployed on
the Smart Objects.

– Monitoring of goods. In this phase the process definition is loaded onto the
Smart Objects and executed. During execution, the Smart Objects keeps track
of the actual process trace: the actual Stage start and termination order is
recorded, together with the list of Stages whose Fault Logger conditions are
triggered, and those whose Data Flow Guards are triggered before Process
Flow Guards become valid. With this information, process compliance can be
assessed at runtime and violations can be promptly reported.

5 Validation

Considering the cross-organization process model introduced in Section 2, the
manufacturing company wants to monitor the activities performed by the ship-
ping company while the goods are moved to the final destination. As shown
in Figure 5, the shipping process to be monitored is composed of the following
steps: (i) the goods are stored into a shipping container attached to a truck; (ii)
the truck ships the goods to site A, more precisely to the railway station if the
shipping takes place during holiday, or to the seaport if it takes place during
a working day; (iii) the container is detached from the truck and either loaded
onto a train, which carries it up to site B, or loaded onto a ship bound for site C;
(iv) the container is unloaded from the train or the ship, and attached to a truck
that finally ships the goods to the customer. This process has been simplified on
purpose with respect to the real world scenario to easily understand its transfor-
mation into extended GSM. That said, future work will take into consideration
more complex process models.



A GSM-based approach for Monitoring Business Processes 9

Fig. 5. Shipping process in BPMN notation.

Fig. 6. Shipping process in extended GSM notation.

From this process, the GSM-based process definition reported in Figure 6 is
obtained. Every stage has a Data Flow Guard that defines the conditions on the
data that determine the start of each activity. In this case, the Smart Object can
identify the beginning of the goods loading phase by detecting that it is being
moved and its GPS coordinates identify the loading area of the producer’s site
as the current location.

Also, every Stage has a Milestone that defines the condition on data that
determines the end of each phase. In this case, the Smart Object can identify
the end of the rail shipping phase by detecting that its position has changed and
its GPS coordinates identify site B railway station as current location.



10 Luciano Baresi, Giovanni Meroni, and Pierluigi Plebani

The definition of Process Flow Guards allows us to define the expected ac-
tivity execution order, which permits to assess process compliance with respect
to the process flow. In this case, by defining for stage Deliver to customer by

truck two Process Flow Guards connected to the milestone of stage Ship to B

by rail and Ship to C by sea respectively, we expect either the rail shipping to
site B or the sea shipping to site C to precede the final delivery of the goods to
the customer.

Fault Loggers, conditions that, if true, mark the associated activity as invalid,
are also defined. In this case, on Stage Load goods into container we define a
Fault Logger on the maximum vertical acceleration of the Smart Object. This
enables to detect if the goods have been dropped and thus it identifies that the
associated phase was not carried out correctly.

The obtained extended GSM schema is deployed on a Smart Object equipped
with sensors monitoring the conditions that a↵ect the shipping process (such as
temperature, position and altitude). Indeed, these are the sensors required to
realize if activities are skipped (e.g., the goods are shipped neither by rail nor
by sea), executed in the wrong order, or not correctly performed (e.g., the goods
were dropped during the loading operation).

The Smart Object can generate process traces during the execution of the
shipping process. This way, both the producer and the shipping company can
be notified whenever fault conditions are triggered or violations in the activity
execution order are detected. Moreover, the shipping company can collect process
traces from each Smart Object, and change its original BPMN process definition
to reflect how the process is actually executed.

6 Related work

Some research e↵orts have been spent on integrating Smart Objects with busi-
ness processes. Meyer et al. [3] propose to extend the BPMN 2.0 notation to
model smart devices as process components. This approach keeps the process
knowledge on the information system, and no process fragments are introduced
on smart devices.

Thoma et al. [4] propose to model the interaction with Smart Objects in
BPMN 2.0 as activity invocations for simple objects, or as message exchanges
with pools representing the whole Smart Object for more complex ones, thus
leaving space for distributing part of the process definitions on Smart Objects.
The limitation of this work is the lack of details concerning how to deal with
data uncertainty and how to define data requirements.

Tranquillini et al. [5] propose a framework that employs BPMN for driving
the configuration of a Wireless Sensor Network (WSN). Since BPMN is used
only at design time for defining the business process, and then it is converted
into binary code executable by the WSN, introducing changes in the process def-
inition at runtime is di�cult. Also, simultaneously supporting multiple processes
on the WSN is not feasible with this framework.



A GSM-based approach for Monitoring Business Processes 11

Schief et al. [6] propose a centralized framework that extends the process
design and execution phases of BPM and that takes into consideration events
generated by Smart Objects. Furthermore, such a framework provides data qual-
ity mechanisms for evaluating events and sensor data. However, this framework
does not allow the explicit definition of requirements for sensor data.

In particular, concerning goods tracking and monitoring among di↵erent par-
ties, the solutions currently adopted by companies are limited to identifying when
goods enter or exit a specific location by using passive RFID tags attached to
them. For example, Brizzi et al. [7] propose a middleware that supports the ex-
change of RFID tag information across federated companies. However, in such
solutions no process definition exists, therefore the task of identifying process
violations is left to the information systems that belong to the involved parties.

Kunz et al. [8], on the other hand, propose a framework for monitoring goods
that takes into consideration the involved business process. Such a framework,
uses a CEP engine to collect and process sensor data coming from RFID tags
attached to goods and to transform them into events. These events are then sent
to a workflow engine that detects violations in the expected process flow and
reacts by running compensation activities. However, such a solution requires the
user to define process flow violation conditions at design time by specifying them
with the BPMN Escalation event. Therefore, unpredicted violations cannot be
handled during execution.

7 Conclusions and Future work

This paper presents an approach for monitoring physical goods when they are
exchanged among di↵erent parties according to a defined cross-organization busi-
ness process. As control-flow models are not suitable to run on the behavior of
Smart Objects due to the limited resources, and are not suitable for defining
the monitoring system behaviour due to their lack of flexibility, an extension of
the Guard-Stage-Milestone framework is proposed. With this extension, a GSM-
based definition of the portion of process to be monitored is deployed on Smart
Objects. These objects, traveling along with the monitored physical goods, re-
alize if and when anomalies in conducting the process occur.

Future work will mainly concentrate on a better definition of how to auto-
matically derive the GSM process model that has to be deployed on the Smart
Object starting from the control-flow process model agreed by the organizations.
Moreover, an implementation of the modules composing the process-aware Smart
Object is planned to validate the approach on a real testbed.

Acknowledgments

This work has been partially funded by the Italian Project ITS Italy 2020 under
the Technological National Clusters program.



12 Luciano Baresi, Giovanni Meroni, and Pierluigi Plebani

References

1. Fortino, G., Trunfio, P.: Internet of Things Based on Smart Objects. Technology,
Middleware and Applications. Springer International Publishing (2014)

2. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, Fenno(Terry), I., Hobson,
S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing
the guard-stage-milestone approach for specifying business entity lifecycles. In
Bravetti, M., Bultan, T., eds.: Web Services and Formal Methods. Volume 6551 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2011) 1–24

3. Meyer, S., Ruppen, A., Magerkurth, C.: Internet of things-aware process modeling:
Integrating iot devices as business process resources. In: CAISE 2013. LNCS 7908.
Springer Berlin Heidelberg (2013) 84–98

4. Thoma, M., Meyer, S., Sperner, K., Meissner, S., Braun, T.: On iot-services:
Survey, classification and enterprise integration. In: IEEE GreenCom 2012. (Nov
2012) 257–260

5. Tranquillini, S., Spieß, P., Daniel, F., Karnouskos, S., Casati, F., Oertel, N., Mot-
tola, L., Oppermann, F., Picco, G., Römer, K., Voigt, T.: Process-based design and
integration of wireless sensor network applications. In: Proc. BPM 2012, Berlin,
Heidelberg, Springer-Verlag (2012) 134–149

6. Schief, M., Kuhn, C., Rsch, P., Stoitsev, T.: Enabling business process integration
of iot-events to the benefit of sustainable logistics. Technical report, Darmstadt
Technical University (2011)

7. Brizzi, P., Lotito, A., Ferrera, E., Conzon, D., Tomasi, R., Spirito, M.: Enhancing
traceability and industrial process automation through the virtus middleware. In:
Proceedings of the Middleware 2011 Industry Track Workshop, ACM (2011) 2

8. Kunz, S., Fabian, B., Ziekow, H., Bade, D.: From smart objects to smarter
workflows–an architectural approach. In: Enterprise Distributed Object Comput-
ing Conference Workshops (EDOCW), 2011 15th IEEE International, IEEE (2011)
194–203

9. Kharbili, M.E., de Medeiros, A., Stein, S., van der Aalst, W.: Business process
compliance checking: Current state and future challenges. In: Modellierung be-
trieblicher Informationssysteme - Modellierung zwischen SOA und Compliance
Management. (Nov 2008) 107–113

10. Awad, A., Weidlich, M., Weske, M.: Specification, verification and explanation of
violation for data aware compliance rules. In: Proc. of ICSOC-ServiceWave ’09,
Berlin, Heidelberg, Springer-Verlag (2009) 500–515

11. Ly, L., Rinderle-Ma, S., Gser, K., Dadam, P.: On enabling integrated process
compliance with semantic constraints in process management systems. Information
Systems Frontiers 14(2) (2012) 195–219

12. Weidlich, M., Ziekow, H., Mendling, J., Gnther, O., Weske, M., Desai, N.: Event-
based monitoring of process execution violations. In: Business Process Manage-
ment. LNCS 6896. Springer Berlin Heidelberg (2011) 182–198

13. Decker, C., Berchtold, M., Chaves, L.W.F., Beigl, M., Roehr, D., Riedel, T.,
Beuster, M., Herzog, T., Herzig, D.: Cost-benefit model for smart items in the
supply chain. In: The Internet of Things. Springer (2008) 155–172


