
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

CO2-aware Adaptation Strategies for
Cloud Applications

Cinzia Cappiello, Nguyen Thi Thao Ho, Barbara Pernici, Pierluigi Plebani, Monica Vitali
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano

Abstract—The increasing utilization of cloud resources raises several issues related to their environmental impact and, more in
general, sustainability. Recently, most of the contributions have focused on energy efficiency achieved through a better physical and
virtual resource management. The present paper considers instead the application level, extending the focus to the reduction of CO2

emissions related to the execution of applications. We aim to exploit adaptivity through the design of an Application Controller that,
enacting the right adaptation strategy for a given context, allows the improvement of the trade off between QoS and CO2 emission
reduction. The effectiveness of the approach has been shown running an HPC application in a federated cloud infrastructure.

Index Terms—cloud computing, Green IT, CO2 emissions, adaptive systems

F

1 INTRODUCTION

IN recent years, an efficient usage of IT resources in data
centers and cloud infrastructures is one of the main goals

for organizations. Approaches to make data centers more
energy efficient have been proposed [1] [2] [3] and the
debate has been extended more recently to cloud infrastruc-
tures. While on the one hand the debate in the cloud and
data centers literature has focused mainly on an efficient
use of physical resources (i.e., host dynamic management
and server consolidation), on the other hand the issue of
providing green applications and reducing their environ-
mental impact has also been considered. An example is the
analysis of business processes to lower their environmental
impact considering the way they are executed [4] [5].

Goal of this paper is to discuss an additional opportunity
for reducing the environmental impact of applications. At
a glance, we propose an approach that controls the appli-
cations during their entire life-cycle, i.e., from the design
phase to the execution phase. At design time, the approach
suggests the optimal set of Virtual Machines (VMs) to be
deployed according to the application profile; at run time,
adaptation strategies are enacted to reduce CO2 emissions.
These strategies are based on the information known at
application level to further reduce the environmental impact
of applications once deployed in a virtualized or cloud in-
frastructure. As reported in the paper, potential for improve-
ment is currently up to a 60% reduction of CO2 emissions.
Such a significant reduction has been obtained making
the application aware of the characteristics of the cloud
platform, providing useful information for dynamically ex-
ploiting the VMs with the best characteristics out of the
VMs assigned to it. The main idea is to exploit the different
characteristics of VMs, even when they are requested with
the same configuration. In fact, their performance depends
on the host on which they are deployed and on the current
status of the infrastructure (e.g., site and server loads).

• E-mail: cinzia.cappiello@polimi.it

CO2 emissions also depend on the site location and the
available energy mix, which may vary in time. Moreover,
among many VMs, which are supposed to be similar, one
or more could be considered “golden machines”, i.e., more
performant, or with less CO2 emissions. This information is
only available through monitoring after deployment and it
should be used at run time to exploit these machines more
than others. Yet, also the number of requested VMs can have
a major impact on CO2 emissions of an application or on its
energy consumption: the best solution consists in selecting
the right number of resources for the tasks to be handled,
considering the requirements.

For the moment, the approach presented in this paper
has been validated for High Performance Computing (HPC)
applications, but further types of applications are being
investigated. The validity of the approach has been demon-
strated using a real application running in the ECO2Clouds
infrastructure1 on top of BonFIRE 2, which provides a so-
phisticated monitoring environment including ecometrics to
assess environmental impact and performance.

This paper is organized as follows. Sect. 2 discusses the
state of the art for improving energy efficiency and reducing
the environmental impact of cloud infrastructures. Sect. 3
illustrates the overall approach motivated by the case study
presented in Sect. 4. Sect. 5 presents the metrics on the basis
of which we define the adaptation strategies introduced in
Sect. 6. A technique for selecting the most suitable strategy is
discussed in Sect. 7. Finally, Sect. 8 introduce the validation
of the work and Sect. 9 outlines possible future work.

2 RELATED WORK

Energy efficiency in data centers and clouds has been one
of the mainstreams in research in recent years. According
to the survey proposed by Vitali and Pernici [3], three
main aspects have been considered in the literature under

1. http://eco2clouds.eu
2. http://www.bonfire-project.eu

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

the umbrella of energy efficiency of Information Systems
(IS): assessment, measurement, and improvement. The work
proposed in this paper mainly focuses on the improvement
of the sustainability in IS with some peculiar aspects. In
fact, most of the literature concerns the infrastructural and
virtualization layers, aiming at reducing the energy con-
sumed by the systems. We extend the area of investigation
to the application layer; then, we propose an approach for
adapting applications running on federated cloud environ-
ments with the aim of reducing CO2 emissions instead of
energy consumption. These aspects differentiate our work
with respect to the related literature. In fact, there are just
few contributions that provide some guidelines to quantify
and manage emissions in data centers (e.g., [6], [7]).

As the literature on the energy efficiency in IS is sig-
nificant, we introduce only some approaches related to:
(i) VM deployment decisions, (ii) run time adaptation and
workload rearrangement, and (iii) CO2-aware adaptation.

The first group focuses on VM placement. Allocation
algorithms are used to decide the best location of VMs
involved in an application. The decision depends on the
policies adopted to allocate the resources, also taking into
account the energy efficiency perspective. An example can
be found in [8], where resources are allocated using a
bin packing algorithm based on an energy-aware heuristic.
Algorithms considering eco-metrics for the deployment of
VMs have been considered by eco4clouds [9], where a
two-layer algorithm has been proposed for multisite de-
ployment. In our approach we are assuming that the VM
allocation to a specific host is already given and can not be
influenced. However, we exploit information coming from
the monitoring infrastructure to take decisions about the
best configuration in terms of number of VMs needed to
execute the job and amount of resources that have to be
allocated to each VM to reduce energy consumption while
respecting quality of service (QoS) constraints.

The contributions related to the run-time adaptation
mainly focus on how to adapt the system to maintain or fur-
ther improve energy efficiency. In [10], authors suggest three
main adaptation strategies to improve energy efficiency in
clouds, namely VM reconfiguration, VM migration, and
physical server powering off/on. The issue of an effective
resource allocation algorithm is also considered in [11],
where resources are allocated taking into account the total
energy consumption, the number of violations of the Service
Level Agreement (SLA), and the number of migrations. Re-
sources allocation is related to both new and old VMs, which
can be moved to improve the system state. The approach
uses bin packing for placing new VMs and an algorithm
lead by CPU usage for deciding when to migrate a VM. A
framework for energy efficiency awareness and adaptation
is proposed in [12]. Measuring power consumption at the
server level, authors propose models for assessing and
predicting energy consumption at server, VM, infrastruc-
ture, and service level. Optimization is achieved considering
actions as consolidation and migration, trying to maximize
the efficiency of all nodes. In [13] the focus is in particular
on improving energy efficiency with consolidation practices
focusing also on the characteristics of the machines: an older
machine is likely to consume more energy to perform a
task rather than a more recent one. The paper focuses on

consolidation and dynamic server hibernation and resume.
In the literature, particular emphasis has been given to the
workload consolidation [14] as a way to make the cloud sys-
tems more efficient. In [15], the authors focus on CPU usage
as a way for determining where to redirect the workload of
a task, based on the existing correlation between CPU usage
and power consumption. Considering the application level,
[16] proposes an approach based on the workload prediction
to have a faster rearrangement of the system with the aim
of reducing energy consumption. In this paper, we are not
implementing consolidation or migration, since we are con-
sidering a system in which we are not in charge of deciding
the placement of VMs. We are instead implementing a logic
to allocate the application tasks to the assigned VMs taking
into account their performance, power consumption, and
environmental impact in terms of CO2 emissions. We are
also proposing a decision strategy able to detect inactive
VMs and to switch them off in order to reduce the power
consumption of the application by avoiding idle time.

Finally, moving from energy-awareness adaptation to
the CO2-awareness adaptation, the source of energy be-
comes an important aspect as it affects the amount of
CO2 emissions. Some contributions focus on how to use
efficiently the renewable resources available while avoid-
ing peak demand of energy from the electricity providers.
In [17], authors propose the usage of Geographical Load
Balancing (GLB) to shift workloads and avoid peak power
demands. This requires to predict both the incoming work-
load and the peak demand to the network. The algorithm
is implemented as a network flow optimization problem.
A similar approach is discussed in [18], which uses both
workload shifting and local power generation for avoiding
peak loads demands on the energy network. The impor-
tance of considering the types of sources of energy has
been addressed also in [19] which proposes an integrated
framework for sustainable clouds where data centers, com-
munication networks and energy sources information are
considered. Some approaches as [20] propose to compen-
sate CO2 emissions of a Business Process using the Green
Compensation Pattern. This pattern does not modify the
process nor the resources, but simply applies alternative
actions to balance the emissions of the service. The CO2
impact of the process is estimated starting from the CPU
usage of the VMs involved. Energy consumption of the
VM is estimated from its CPU utilization as described in
[21], dividing the energy of the physical server between all
the VMs deployed on it. Emissions are computed knowing
the energy mix of the specific site. An automated method
for applying the pattern is proposed. In our work, we
consider the energy-mix from an application perspective,
trying to manage the distribution of the workload between
the VMs assigned to the considered application which have
the lower environmental impact. Moreover, we propose a
technique to estimate future trends in emissions and/or to
suggest a different deployment time in order to improve the
sustainability of the application.

3 OVERALL APPROACH

The aim of this work is to make the application execution
as efficient as possible considering the whole application

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 3

Adaptation
strategies

Application
Profile

Configuration

Deployment

Execution

Application
Controller

Fig. 1. Application life cycle

life cycle: i.e., taking into account the requirements of the
application developers and users and, at the same time,
adapting the execution to the dynamic environment. As
shown in Fig. 1, the first phase concerns the Configuration,
i.e., the definition of the requested resources, as well as
the associated QoS requirements which also include con-
straints on eco-metrics. The characteristics of applications,
as resulting from the configuration phase, are represented
in an Application Profile associated to the application, that is
used as an input to the deployment and execution phases.
Once the Application Profile is defined, we assume that the
Deployment is performed on a cloud infrastructure assigning
to the application the requested VMs. Finally, the Execution
of the application starts. We propose a set of Adaptation
Strategies, supervised by an Application Controller associated
to each running application, to enable the satisfaction of
requirements with limited resources. Generally speaking, a
just-in-time approach can be applied during the execution
of applications, in order to make their execution as efficient
as possible according to the requested resources and the
specified requirements. In addition, if an application, once
terminated, needs to be executed again (as might occur
in case of HPC applications), the cycle restarts and a new
configuration can be requested to optimize the number and
type of resources to be deployed. Details on these adaptation
strategies are given in Sect. 6.

Fig. 2 shows the architecture of the Application Con-
troller, whose objective is to support the execution of the
application selecting and enacting the adaptation strategies
for: i) satisfying requirements specified by the user and ii)
using the resources efficiently according to the requested pa-
rameters. The Application Controller is therefore composed
of the following elements:

• a set of adaptation strategies enabling adaptation of
the application execution; we distinguish between
mechanisms that are used during the execution of
the application (run-time adaptation), such as flow
rearrangement and time shifting, and mechanisms
that are used to adapt the application configura-
tion in repeated sequences of execution (design-time
adaptation), using an application profile refinement
strategy. For instance, a run-time action might release

Application Controller

Cloud (IaaS)

Virtual
Machine

Virtual
Machine

Virtual
Machine

Application

adaptation strategy
selector

adaptation strategies

Application
Profile

refinem
ent

flow
rearrangem

ent

tim
e shifting

Monitoring infrastructure

Fig. 2. Application controller

a VM, while a design-time adaptation might change
the number of requested VMs in future deployments
of the application, based on the results from previous
similar executions;

• an adaptation strategy selector that automatically se-
lects among the available possible adaptation strate-
gies, based on: i) an initial configuration of the appli-
cation controller (e.g., specifying the time intervals
for the control actions), ii) the defined strategies,
and iii) the context of the execution. The context is
defined as the values assumed by the parameters
defined for the application, including QoS (e.g., re-
sponse time) and eco-metrics (e.g., the CO2 emitted
by the application during its execution or its forecast
value). A monitoring infrastructure provides the val-
ues of eco-metrics and parameters considered in our
CO2-aware strategies that are described in Sect. 5.

The Application Controller selects and enacts adaptation
strategies according to the rules defined in the adaptation
strategy selector. The Application Controller also controls
the requests of the application to the underlying infras-
tructure (e.g., releasing VMs, requesting additional VMs)
getting monitored parameters from the cloud infrastructure
(e.g., CPU usage within used VMs). The context parame-
ters, the chosen metrics, and the strategies are application
dependent and can vary depending on the considered ap-
plication. Once the Application Controller is configured,
several experiments can be launched using the same con-
trol mechanisms and the same action selection logic. The
experiments can have different characteristics according to
requests of the users: for instance, a single run (instance)
of the application may be launched, or a set of instances
may be launched together in the same experiment; different
constraints on the upper bound of emissions and duration
can be specified.

The Application Profile associated to each HPC exper-
iment contains the result of the Configuration phase and
specifies the requested VMs, their configuration, and the
constraints on QoS and eco-metrics according to four main
set of metadata: (i) Resource metadata: provide information
regarding the type and characteristics of resources (i.e., VMs
and storage) requested to execute the application; (ii) Flow
metadata: provide information regarding the list and the
structure of the tasks composing the application and the link

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

Resource 3 VM (1 CPU, 4 GB RAM, 2GB disk) computation
metadata 1 VM (1 CPU, 1 GB RAM, 10GB disk) storage

Data Oceanographic Data (OD)
metadata 3 GB size, binary files

Flow see Figure 3
metadata One year simulation task reads OD

One year simulation task writes 1-year trajectories

Energy and response time < 3 hours
performance CO2 emission < 10 grCO2eq
requirements

TABLE 1
Eels case study Application Profile

between tasks and nodes specified in the resource metadata;
(iii) QoS and eco-metric requirements: refer to energy and
performance conditions or constraints within process flows,
including eco-metrics such as CO2 emissions and time con-
straints; (iv) Data metadata: provide information regarding
the data used by the application and the dependency among
tasks and data. The Application Profile is the input for the
Application Controller that uses these metadata to evaluate
which adaptation strategies has to be enacted during the
execution of the experiment.

In the following, we present an approach able to support
adaptation to reduce CO2 emissions of an application.

4 RUNNING CASE STUDY

To better explain and motivate our approach, in this article
we refer to a HPC application in the ecology domain [22].
The application computes the trajectories followed by eels
cohorts during their travel along the Atlantic Ocean to
European coasts. The application, based on a parametric
prediction model, provides a description of the life cycle
of eel larvae and the characteristic of the water they cross
during their travel to the European coasts in terms of
temperature and salinity. Although we are referring to a
specific application, the presented approach can be extended
to many other scenarios, as typical patterns adopted in HPC
applications are considered. For instance, the application
starts with a data loading phase followed by a computa-
tional phase. Moreover, the involved activities can indiffer-
ently run in sequence or in parallel. This leaves the freedom
to organize them in a structure that can be adapted with
the final goal, in our case, to reduce the CO2 emissions.
This flexibility can be feasible on a cloud infrastructure, as
each activity runs in its own VMs that can be easily added
and removed. Another set of applications that could fit to
this scenario includes applications using the MapReduce
programming model where several nodes implementing the
reduce activity can be dynamically created and removed to
run the activities in parallel. Another field of applicability
are business processes where some activities have multiple
instances and these instances are atomic and can be executed
independently.

Tab. 1 shows an example of Application Profile describ-
ing the eels application. To run this application two types
of VMs are required: (i) one for storing the Oceanographic
Data (expressed also as requirements in the Data metadata
section) about the characteristics of the Ocean in terms of

Initial setup

One year simulation task

Result
aggregation

One instance for each
year to simulate

Data loading Trajectories
Computation

One year
trajectories

Oceanographic Data

Number
of years

Fig. 3. Eels application workflow.

temperature and salinity required to compute the trajec-
tories; (ii) the other one for the computation of the eels
trajectories (in this case 3 VMs of this type are required). For
the energy and performance requirements, we assume that
the user asks that the execution of the application cannot
last for more than 3 hours and the total CO2 emissions
must be lower than 10 grCO2eq for a single execution.
About the flow metadata, as shown in Fig. 3, the application
can be represented as a process composed by a number
of separate steps, which can be executed independently in
different computational nodes. The input of the application
is a temporal interval expressed in years that indicates for
how long the eels cohort travels along the ocean, and the
objective of the application is to simulate which will be
the trajectories that each eel is estimated to follow. For the
sake of simplicity, we assume that the size of the cohort is a
constant value (i.e., 5,000). This assumption does not affect
the generality of the approach since increasing the size of
the cohort results only in a linear increase of the execution
time of the simulation task.

After an initial setup required to properly initialize
the computation variables with respect to the number of
years requested to be simulated, for each year an instance
of the simulation task is created and executed. This task
firstly loads the Oceanographic Data, then it computes the
trajectories for each of the eels. Once all the simulation
tasks terminate, the application aggregates all the values
and returns the results. The simulation task is the core of
the application and, due to the nature of the data and of the
underlying biological model, a simulation of a given year
is independent from the simulation of another year. This
means that when simulation of several years are requested,
the simulation tasks can run in parallel (as shown in Fig. 3)
or sequentially. It is also possible to have a mix, with some
simulations running in parallel followed by some other
simulations running sequentially.

5 ECO-METRICS

In order to offer CO2-aware cloud environments, it is neces-
sary to monitor the environmental impact of the execution
of applications, i.e., their carbon footprint. Carbon emissions
can be assessed on the basis of two variables: power consump-
tion and emission factor. The former can be gathered from the
infrastructure through external probes and/or computing
hardware functionalities. The latter results from the energy
mix, that is the variety and quantity of the energy sources
used by the analysed cloud site. These two parameters are
sufficient for the assessment of the environmental impact,

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 5

but they are not sufficient for its improvement. In order
to be proactive and improve the application greenness it
is necessary to have details of all the variables that might
have an impact on the quantity of power consumed by the
application. A cloud infrastructure has three main layers to
monitor: (i) an infrastructural layer that considers the energy
mix and the characteristics of the cloud site together with its
resources; (ii) a virtualization layer that contains the VMs,
on which applications run; (iii) an application layer that
includes the applications running on one or more VMs. For
each layer we identify the metrics that should be monitored.
Such a model can be applied both in infrastructures with a
single site (i.e., a data center) or in federated cloud infras-
tructures. Once data are collected, their analysis is partially
dependent on the application that is running, therefore we
let the users specify thresholds for the given metrics in the
application profile. Such thresholds drive the enactment of
adaptation techniques.

5.1 Infrastructure-layer metrics
At the infrastructure layer, it is important to consider the
characteristics of the cloud site and of its hosts. At the
cloud site level, the approach presented in this paper mainly
focuses on the definition of the energy mix that measures
the variety and amount (in percentage) of the different
energy sources that feed the site. The energy mix provides
the information to assess the Carbon Emission Factor, i.e.
the quantity of grams of carbon emissions per each KWh
of energy produced. The energy mix can be retrieved in
different ways. Some countries publish the real time energy
mix via public web sites (e.g., France publishes the energy
mix used at the national grid level on on the RTE website 3).
In this case the emission is a weighted average of the sources
emission factors on the basis of the percentage of power
generated. The source emission factors can be found in
different literature contributions. In particular, we consider
the carbon footprint of different production technologies
given by [23], since they include also the carbon footprint
left during the construction phase, maintenance, operation,
and decommissioning of the energy source. Formally, if TE
is the total energy generated in a country expressed in KWh,
SEk is the energy generated by the k-th source, and efk is
the emission factor related to the k-th source expressed in
g/KWh, the total emission factor ef of the cloud site in that
country can be calculated as follows:

ef =

K∑
k=1

SEk

TE
· efk (1)

For countries in which the real time energy mix is not
available it is possible to rely on electricity operators that
periodically publish the average energy mix along with the
associated carbon emission factor of the country in a specific
period. In this case, assuming to know the average power
consumption (AP) for a specific site, the energy (kWh) con-
sumed in a specific period can be estimated by multiplying
AP by the number of hours in the considered period. CO2
emissions result by multiplying the energy consumed by the
emission factor ef (that is a constant calculated considering

3. http://www.rte-france.com/fr/

the average energy mix in a certain period). These two
assessment approaches can be also used when the cloud
site does not depend on the national grid. In fact, the site
might rely on its own energy sources and have a complete
knowledge on the trend of its energy mix or it might be
fixed since the site has stipulated a specific contract with the
energy providers.

Beside the energy mix, traditional indexes for measuring
the site energy efficiency, such as PUE, are considered. In
addition, we monitor also metrics able to provide infor-
mation on the energy efficiency class of the machines: the
CPU Utilization, the Disk IOPS (i.e., I/O operations of the
disk), and the power consumption of the machine (that can be
gathered through external probes).

5.2 Virtualization-layer metrics
Energy consumed by an application depends on the power
consumption of its VMs. To calculate this value, we adopted
the approach defined in the ECO2Clouds Project [24] [25]
where the power of a VM depends on both the characteris-
tics of the VM 4, how many VMs are deployed on the same
physical host (#VM), and the measured power of the host
(Phost). More precisely:

Pvm = P idle
vm + Pworking

vm (2)

where:

• P idle
vm =

P idle
host

#VM
represents the fraction of the idle

power of the host assigned to the VM. It depends on
the number of VMs deployed on the same host but
it does not depend on the characteristics of the VMs.
In fact, regardless of the size of a VM, each of them
are equally responsible for the fixed cost of P idle

host.
• Pworking

vm = (Phost − P idle
host) · CPUusagehostvm is the

fraction of the working power of the host assigned to
the VM, where CPUusagehostvm is the percentage of
CPU of the host currently used by the VM.

5.3 Application-layer metrics
Application layer metrics characterize the application. The
values of such metrics depend on the deployment of the
application, i.e., on the way in which the different tasks
are assigned to different VMs. In fact, the evaluation of
metrics such as Application response time and Application
power consumption can be calculated only by aggregating the
corresponding values gathered from the different VMs. In
this category, it is worth to highlight a metric, the Application
PUE (A PUE) (see [27]), able to detect energy inefficiencies
that can occur during the execution of the application. It
is defined as the ratio between the actual total amount
of power required by all VMs of an application and the
estimated power needed to execute the application tasks.
Thus, in order to perform the assessment of A PUE, it is
necessary to provide an estimation of the power consumed
by the different application tasks during their execution.
Such estimation can be based on the theoretical analysis

4. As we are considering CPU intensive applications, as also stated
in [26], contribution of disk usage and network usage in computing
Pvm are considered negligible.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

of the characteristics of the application or on empirical
knowledge gathered from previous experiments. A PUE is
able to highlight energy waste. Once that the total amount
of energy required for executing the application is known,
it is possible to calculate other two important indexes: Ap-
plication Energy Productivity and Application Green Efficiency.
The former provides the energy consumed by the different
application tasks while the latter measures the amount of
green energy used to run an application on the basis of
the percentage of green sources used to provide electricity
inside the analysed site.

6 STRATEGY SELECTION

This section shows how adapting applications following
specific strategies can have a significant impact on CO2
emissions reduction. The solution proposed in our approach
to support the adaptation is based on the usage of an
Application Controller that defines and manages adaptation
strategies for a running application. In particular, we inves-
tigate three adaptation strategies: (i) flow rearrangement, (ii)
time shifting, and (iii) application profile refinement.

The first one (Sect. 6.1) operates at run-time along the
whole duration of the application execution. It considers
applications already deployed, with the objective of find-
ing a way to make them flexible enough to change their
behavior in order to reduce CO2 emissions while main-
taining satisfied the other non-functional requirements (e.g.,
response time, throughput). It is executed automatically,
mainly driven by the current status of the system. The
second one (Sect. 6.2) operates at run-time but only when
the application is about to start, in order to check the
possibility to postpone the execution. Based on the current
energy mix trend, the system identifies the starting time
in which this mix reflects a greener status. Finally, the last
adaptation strategy (Sect. 6.3) operates at design time and
gives to the developers a support to redefine the applica-
tion profile, evaluating alternative configurations, in terms
of number and size of requested VMs, that can provide
better performance with less CO2 emissions. The design-
time adaptation strategy is driven by logs and monitoring
data obtained from previous executions. This strategy is
particularly suitable in the case of HPC applications where
the same application can be repeatedly executed in different
moments. By analyzing the behavior of previous executions,
the developer is supported by our solution to find greener
alternatives to execute the same work.

All these strategies use as input the information con-
tained in the Application Profile as described in Tab. 2.

6.1 Flow rearrangement

Flow rearrangement affects the structure of the application
flow that can be modified by the Application Controller in
different ways:

• Rearranging the workload assigned to the tasks com-
posing the application and switching off a VM if no
longer needed.

• Skipping tasks if they are defined as ’optional’ in the
Application Profile under critical timing conditions.

resource data flow energy and
metadata metadata metadata perf. req.

flow
rearrangement X X X

time
shifting X X

app. profile
refinement X X X X

TABLE 2
Application Profile sections used by the adaptation strategies

This strategy can be applied to applications that can be
decomposed into atomic tasks, where several instances of
the same task can run in parallel to improve the perfor-
mance of the entire application. Referring to our case study,
the eels application includes the simulation task that com-
putes the trajectories of a cohort of eels towards the ocean
along a set of years. This simulation can be decomposed on
several small simulation tasks, each of them considering the
movement of the eels along a single year. Due to the nature
of the application and the data used, these small tasks can
be executed in sequence or in parallel without affecting the
final results. Moreover, some tasks, as for instance the result
aggregation, can be declared optional if the system realizes
that the constraint on the application response time is going
to be violated.

Concerning this strategy, the Application Controller im-
plements mechanisms to support the workload rearrange-
ment and the task skipping. Fig. 4 shows a BPMN rep-
resentation of the Application Controller behavior when
managing one of the tasks of the application flow, where
such a task can be executed by several nodes in differ-
ent Application VMs. At the beginning, the Application
Controller performs the initial workload distribution. If no
information about the status and the performance of the
application nodes is available, the Application Controller
evenly distributes the workload among the nodes. In case
the application has been previously executed (common situ-
ation in HPC scenarios) the analysis of its previous behavior
can be used for defining the initial distribution. Every time
an assigned task completes, the Application Controller aims
to converge to the workload distribution that minimize
CO2 emissions, by revising the workload distribution on
the basis of the information on power, response time and
energy mix (using the technique discussed in Sect. 5) that are
collected in the meanwhile. Listing 1 details the algorithm
of the workload rearrangement activity currently adopted.
If the vmset is composed by only one VM then all the
tasks are assigned to it. Otherwise, after computing the
CO2 emissions for each of the running VMs (see line 9),
which depend on both response time and the VM power,
the tasks are inversely proportional distributed with respect
to their emissions: the higher the emissions, the lesser the
number of tasks to be included in the worklist (see lines 14–
15). An additional assignment (see line 30) may be required
in case the number of tasks assigned to the VMs does not
correspond to the total number of tasks due to the rounding
(see line 15).

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

A
pp

lic
at

io
n

C
on

tro
lle

r

Send updated
worklist

Initial workload
distribution

no more
work

Workload
rearrangement

CO2 and
Response Time

prediction

Read current
assigned
worklist

Notify task
completion

Worklist

no more
work

for the node

Receive
initial

worklist

A
pp

lic
at

io
n

V
M

A
pp

lic
at

io
n

m
od

ul
e

A
pp

lic
at

io
n

Lo
ca

lA
ge

nt

Receive
updated
worklist

Execute
first task in the

worklist

Update
worklist

Switch off VM

Skip task

Fig. 4. Flow rearrangement overview.

Listing 1 Workload rearrangement algorithm
Input: tasks[no tasks]: tasks to be executed
Input: vmset[no vm]: list of vm nodes
Output: worklist[no vm]: tasks assigned to nodes

1: if no vm == 1 then
2: addAll(worklist[0], tasks)
3: exit
4: end if
5: for vm: vmset do
6: p← ESTIMATE POWER(vm)
7: rt← ESTIMATE RESPONSETIME(vm)
8: em← ESTIMATE ENERGYMIX(vm)
9: VMCO2[vm]← p ∗ rt ∗ em

10: end for
11: tot CO2 ← SUM(VMCO2)
12: j ← no tasks
13: for vm: vmset do
14: no assigned tasks← no tasks∗
15: ∗round(1

VMCO2[vm] ∗
1∑

1/tot CO2
)

16: if no assigned tasks > 0 then
17: for i: no assigned tasks do
18: j −−
19: if j >= 0 then
20: add(worklist[vm], tasks[no tasks− j])
21: end if
22: end for
23: else
24: SWITCHOFF(vm)
25: no vm−−
26: end if
27: end for
28: bestvm = indexOf(min(VMCO2))
29: if j > 0 then
30: add(worklist[bestvm], tasks[no tasks])
31: end if

The Application Controller manages the nodes, where
the application actually runs, communicating with the Ap-
plication Local Agent. The agent gets informed about the
worklist to be executed and informs about the tasks com-
pletion. Moreover, the agent controls the execution of the
task and, if requested by the Application Controller, it
switches off the managed VM. A VM is switched off when
the rearrangement algorithm realizes that no task will be
assigned to it.

Time complexity of the proposed algorithm linearly
depends on the number of the VMs that the application
controller has to manage and the number of tasks that have
to be distributed on them. Although in this work we did not
elaborate a deeper analysis on how the increasing of VMs
can affect the performance of the algorithm, the instruction
composing the algorithm are so basic that its response time
is usually negligible with respect to the duration of the task
that needs to be optimized. On the other hand, network
can be the element that can have a significant impact on
the algorithm. As the decisions taken by the Application
Controller are also based on the data provided by the
Application Local Agents, network latency could reduce the
performance of the workload rearrangement.

6.2 Time shifting

As described in Sect. 5, the type of energy sources and
the percentage of green energy used to produce electricity
define the energy mix that influences the quantity of CO2.
Clearly, since different countries (or regional areas) use in
a different way the energy sources, each country supplies
a different energy mix and cloud sites might execute the
same application by producing different quantities of carbon
emissions. For this reason, in a cloud environment, the load
distribution between VMs belonging to the same application
should be also driven by the analysis of the energy mix of
the different sites available.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

0"

100"

200"

300"

400"

500"

600"

0:00" 2:00" 4:00" 6:00" 8:00" 10:00"12:00"14:00"16:00"18:00"20:00"22:00"

gr
CO

2e
q(

day,me(

FR-weekday"

FR-weekend"

UK-weekday"

UK-weekend"

Fig. 5. Energy mix factor patterns.

Analyzing energy mixes, we find out that they are
characterized by seasonal patterns that describe the way in
which the site emission factor varies during the day. For
instance, we analyzed the data related to September 2014
about the energy generation in France and UK, available
through the RTE 5 and Balancing Mechanism Reporting Sys-
tem (BMRS)6 websites and we found out the trends depicted
in Fig. 5. We registered these pattern by storing the absolute
variations in the different time period (i.e., half an hour). In
particular, Fig. 5 highlights the periodical variations of the
emission factors during week days and weekend days by
considering, as starting points, the average values of the
period. The France pattern shows that during weekdays
the emission factor is slighty lower during the night. The
pattern of the weekend is similar but in average the emission
factor is lower than during the weekdays. The difference
between weekend and weekdays is similar in UK but in this
case, it is also possible to notice more significant variations
of the emission factor during the days. In fact the emission
factor in UK decreases in the night but between h4.00
and h6.00 it starts increasing and after some fluctuations
it decreases around h21.00. As discussed in Sect. 6.2, these
regular trends are exploited to design the time shifting
strategy. Such strategy can be applied if the users that
ask for the deployment of their application do not specify
time constraints that imply the immediate execution of the
application. In fact, the time shifting exploits the regular
variations of the emission factors to delay the execution
of the application and reschedule it in time intervals in
which the emission factors is expected to decrease and CO2
emissions are lower. Details about the time shifting strategy
are provided in Listing 2. For example, if users submit their
request during the afternoon, the Application Controller,
considering the current site emission factor, variations de-
fined in the pattern, the estimated energy consumption and
response time of the application, can calculate the quantity
of CO2 emissions at different times and decide to delay
execution to the most suitable time (e.g., in the night) for
minimizing CO2 emissions.

6.3 Application profile refinement
The application profile refinement is an adaptation strategy
applied at design time. The amount of CO2 emission is

5. http://www.rte-france.com/fr/
6. http://www.bmreports.com/

Listing 2 Time shifting algorithm
Input: siteset[nosites]: emission factor profiles
Input: efpattern[time, variations]: emission factor pattern
Input: app: application to be executed
Input: site: site in which the application has to be executed
Output: starttime: proposed start time

1: rt← ESTIMATE RESPONSETIME(app)
2: en← ESTIMATE ENERGY(app)
3: starttime← CURRENTTIME
4: efcurrent ← ESTIMATE EFAVG(site, starttime, rt)
5: emissions← en ∗ ef
6: for time:efpattern do
7: efest ← ESTIMATE EFAVG(site, time, rt)
8: emissionsest = en ∗ efest
9: if emissionsest < emissions then

10: emissions← emissionsest
11: starttime← time
12: end if
13: end for

closely related to the energy consumed by the applications
as reducing energy consumption causes the reduction in
CO2 emissions, provided that the energy mix is the same.
In this section, we shift our focus to the achieving energy
efficiency by modifying the application profile, in particular
the resource metadata.

We propose an analytical approach to compare several
configurations that differ in how the resources are used and
how the tasks are executed, particularly related to: (i) the
number of used resources: it refers to the number of used
VMs and their size (e.g., number of CPU, allocated memory
and storage, etc.) to execute the tasks; (ii) the execution
policy: it refers to the way the tasks are performed (e.g.,
sequential vs. parallel execution); (iii) the storage access
policy: synchronous vs. asynchronous access.

We use queueing theory as a mean to model differ-
ent configurations to execute a given set of tasks. In the
queueing model, computing resources (e.g., the VMs) are
represented as a network of stations and the number of
executed tasks is presented as customers. The basic station
can be either queue station (i.e., station has a queue to store
waiting jobs) or delay station (i.e., station has no queue)
and is characterized by the service demand (i.e., the time
required to serve one job at the station). Other stations per-
form advanced operations such as Fork and Join to simulate
synchronous/asynchronous access. Each configuration has
a queueing model whose inputs include:

• The number of tasks to be executed, no tasks.
• The number of stations and their type (queue or

delay station). The queue station is used in case
of having shared elements (e.g., the VM is shared
among tasks) whereas the delay station is used for
un-shared elements (e.g., the VM is dedicated to each
task).

• The set of service demand D of the stations: it varies
depending on the size of the VM.

Some of these inputs can be extracted from the Application
Profile. For example from the selected case study, the Flow
metadata suggests two stations are present in the model,

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

the Storage station to access stored data and the Application
station to run the computation phase. The Data metadata
indicates that the Storage is a queue station because the data
storage is a shared element, while the Application can be a
queue or delay station depending on whether the config-
uration shares the VMs among tasks or not. Other inputs
will be given in the configurations, such as the number of
tasks no tasks and the size of the VMs, thus determining
the service demand.

The outputs of these queueing models consist of the
execution time T and the total energy consumption E of
the configuration.

As the P idle
vm (i.e, P idle

host

#VM) depends strictly on the number
of running VMs (#VM) on the host and this number cannot
be determined at design time, in this strategy, we use the
maximum possible value of #VM to have the minimum
value of P idle

vm associated to each VM. Concerning Pworking
vm ,

information on how Phost varies, with respect to the host
CPU usage, is required. To this aim, we assume that for
each available host, a power consumption profile, stating
the amount of power consumed with respect to the CPU
usage, is available.

The pair < T,E > will drive the decision for the
best configuration, considering all the QoS and energy con-
straints. The chosen configuration indicates the number of
used VMs and their size to be updated to the resource meta-
data in the Application Profile by the Application Controller.
For the subsequent runs of the application, the strategy
selector module of the Application Controller compares
the real monitored data to the previous data produced by
the models in order to decide whether the configuration
should be changed. This improvement step is necessary
as it exploits the runtime value of P idle

vm . Other techniques
such as ERWS (Energy Response time Weighted Sum) to
combine the execution time and the consumed energy can
also be used to evaluate the configurations. Listing 3 shows
the algorithm to analyze possible configurations for a given
application.

Listing 3 Configuration analysis algorithm
Input: no tasks: number of tasks to be executed
Input: C < m, [stations, station types,D] >: the set of

configurations, each is characterized by its correspond-
ing queueing model m, number of stations stations,
types of stations station types, the set of required ser-
vice demand at each station D

Output: < T,E >: the set of execution time and estimated
energy consumption of the configurations

1: for c: configurations do
2: compute execution time Tc from m
3: compute consumed power Pvm (see Eq. 2)
4: compute consumed energy Ec

5: if Tc and Ec satisfy constraints then
6: insert < Tc, Ec > to < T,E >
7: end if
8: end for
9: return < T,E >

7 ADAPTATION STRATEGY SELECTION

In this section we propose a set of techniques that are
employed in the strategy selector module of the Application
Controller (see Fig. 2) to decide when to apply an adaptation
strategy and which strategy is the most suitable given a
context. We propose a technique based on the analysis of
the correlations among eco-metrics starting from the data
collected by the monitoring infrastructure.

In a complex environment such as a cloud infrastruc-
ture, it is important to explore possible relations existing
among the collected metrics. Knowing these relations yields
several positive outcomes. Firstly, collected metrics can be
considered as sentinels of the behaviour of the application.
When the values of the metrics are outside the constraints
expressed in the Application Profile, the performance or
the sustainability of the application has to be improved.
Knowing relations among metrics enables an indirect fixing
approach since the value of a metric can be improved modi-
fying the value of a related metric. Secondly, we can perform
what-if analysis. In fact, we can predict which metrics will
be affected by the modification of the value of one or more
other metrics and if this impact will be positive or negative
for our goals.

A Bayesian Network (BN) structure has been adopted
to represent relations among indicators, where nodes are
the metrics and links express relations between couple
of metrics. The probability table associated to each link
describes how the two metrics influence each other. The
BN can be manually created by an expert or can be au-
tomatically built starting from the data collected by the
monitoring system. To learn the structure of the BN we
have computed the correlations between all the monitored
metrics and we have selected relevant links and oriented
them by using a modification of the Max-Min Hill Climbing
(MMHC) Algorithm described in [28]. The algorithm uses
the correlations as an initial parent set and applies heuristics
to find the parent-children relations which better fit the
training data set. The probability tables are computed using
Maximum a Priori Estimation. The algorithm is described
in [29]. In a dynamic environment, where the configuration
and placement of machines could be changed over time and
their behaviour can be influenced by external factors (e.g.,
the deployment of other machines in the server belonging to
a different application can decrease performance of a VM),
the automatic learning and refinement is more suitable.

Using our case study, we have extracted relations be-
tween metrics from the data collected by the monitoring
infrastructure during the execution of several experiments.
A graphical representation is shown in Fig. 6. Collected
metrics are only relative to physical and virtual machines
involved in the application. From the evidence emerged in
the correlation matrix, we have observed some interesting
behaviours. Firstly, the CPU usage of a server (CPUhost)
is strongly related to the CPU usage of VMs deployed on
it (CPUvm), and the power consumed by a server (Phost)
is strongly related to its CPU usage. Similarly, a strong
relation exists between power (Pvm) and CPU usage of
a VM. This analysis confirms the strong relation existing
among the processor load and the power consumption
in CPU-intensive applications. Yet, an interesting relation

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

Fig. 6. Correlations among metrics for the Eels application.

0"

0.5"

1"

1.5"

2"

2.5"

3"

A"
PU

E&

'me&

symptom of
problems

adaptation action
enactment

system
recovered

Fig. 7. Turning off a VM when an increasement in A-PUE is observed.

exists among the power consumption of a VM and the
throughput of the task deployed on it (THvm). This is an
indication that reducing power can result in a degradation
of the QoS. For example, a negative influence has been
discovered between the A PUE metric (A PUE) and the
VMs throughput: A PUE gets worse when the throughput
of a VM hosting a task of the application decreases. As
the throughput is a metric that is usually hard to collect,
unless the code of the application is modified, its behaviour
can be inferred from the A PUE (Sect. 5.3). The ideal value
for A PUE is 1, meaning that all the power consumed by
the VMs goes to run the application. On the contrary, the
higher the value of A PUE, the worse the behaviour of the
application due to VMs that are not running any useful
computation.

In order to allow the Application Controller to enact
the best strategy given a context, it is necessary to make
it aware of the effect of the available repair strategies over
the monitored metrics. As previously mentioned, this infor-
mation can be encoded by an expert, or can be automat-
ically learned/refined using machine learning techniques.
To learn strategy-to-metrics relations we have implemented
an algorithm, called Adaptive Strategy Selection (ASS) [29],
that observes the outcome of an adaptation strategy over the
observed metrics and keeps track of the ability of the strat-
egy of influencing their values. This information is saved
in a quality matrix Q and updated after each application of
the adaptation strategy, integrating information about the
most recent execution and past executions in order to reduce
the side-effects of the noise in the monitoring system. This
makes the algorithm suitable for a dynamic environment.
Knowing matrix Q and which are the metrics that need

to be improved, the AAS algorithm can select which is the
most likely successful strategy for the given context. As an
example, if the A PUE is violated, the algorithm invokes the
flow rearrangement strategy which can use the information
provided by the strategy selector to decide to switch off
the VM that has terminated the computation by moving
its workload to other VMs. Fig. 7 illustrates the value of
A PUE during the execution of an application, showing
how the decision of turning off a VM brings the values
of A PUE inside the desired interval again. Similarly, an
inefficient use of the resources allocated to the VMs can
activate the Application Profile refinement strategy to find a
better configuration for a future execution of the application,
while the flow rearrangement strategy can also be activated
by the detection of a modification of the behaviour of a VM
in terms of power consumption or response time, which
can be an input for rearranging the workload between the
different active VMs. Finally, a high value for CO2 emissions
in a site where the application or one of its tasks is running
can enact the time shifting strategy to detect a better starting
time. Given this knowledge, the awareness about the rela-
tions between variables allows the selector to reason about
indirect improvements: knowing how metrics interfere with
each other enables to enact strategies which can directly
improve the violated metrics, or indirectly improve them
by intervening over related metrics.

Listing 4 Adaptive Strategy Selection
Input: BN : the BN of relations among indicators
Input: A set: the set of available adaptation strategies
Input: Q[no strategies, no indicators]: the quality matrix
Input: C[no indicators]: the current state (context) of the

indicators
Output: a∗: the strategy to be enacted

1: if In is violated then
2: wn = 1 . compute weights vector wn

3: else if In is near to be violated then
4: wn = 0.5
5: else
6: wn = 0
7: end if
8: for a: A set do
9: p(a|C)←

∑
f(Q[a, In] ∗ wn) . the impact of strategy

a over indicator In
10: end for
11: for p: P do . select the parent set P of the violated

indicators from BN
12: C ′ = C ∪ the state for p maximizing the probability

of improving violated indicators
13: end for
14: compute values for wn according to C ′

15: for a: A set do
16: p(a|C ′)←

∑
f(Q[a, In] ∗ wn)

17: end for
18: select a∗ with the highest likelihood of success given

p(a|C) and p(a|C ′)

Exploiting both the strategy-to-metrics relations and the
mutual influences among metrics, the adaptation strategy
selection logic allows the Application Controller to enact
the best strategy in a given context as briefly described in

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 11

Listing 4. The algorithm is a simplification of the detailed
algorithm described in [29]. After the enactment of the
selected strategy, its effect over the indicators is observed
and matrix Q is updated accordingly.

8 VALIDATION

The effectiveness of the adaptation strategies discussed in
Sect. 6 was validated on a federated cloud infrastructure
developed in the BonFIRE and ECO2Clouds EU projects.
This platform allowed the deployment of VMs in three
main sites: EPCC in UK, HLRS in Germany, and INRIA
in France. Involving three different countries gave us the
possibility to consider different variations of the energy mix.
In particular, HLRS had a static energy mix value, whereas
in INRIA and EPCC the energy mix varied every 30 minutes
according to the data returned by their national electricity
grid administrators. In addition, each site provided a moni-
toring infrastructure able to collect all the eco-metrics at the
different layers: i.e., infrastructural, virtual, and application.
Concerning the computation of the eco-metrics, all the sites
were equipped with PDUs (Power Distributed Units) able
to periodically compute the amount of power consumed by
all the hosts installed on the site [30]. Based on this value,
the power consumed by each VM, the CO2 emission and all
the eco-metrics were computed as discussed in Sect. 5.

The application used to validate the approach refers
to different configurations of the case study described in
Sect. 4. For the first two adaptation strategies we considered
(i) a baseline configuration, and (ii) several optimized configu-
rations defined to validate the introduced adaptation strate-
gies. More in details, the baseline configuration concerns the
execution of the eels application using 4 VMs: (i) 3 VMs
(2 CPUs, 2 GByte memory) for the actual execution of the
simulation tasks; (ii) 1 VM (1 CPU, 1 GByte) for collecting
and computing the metrics.

Having 15 years to be simulated, the baseline configura-
tion concerns the execution of these tasks evenly distributed
among the three VMs, i.e., 5 years each. In addition, the
baseline configuration has, as a constraint, the execution
of the application on Sep, 1st 2014 (Monday) at midnight
where postponement is not allowed.

As described in details in the related paragraphs, the
configurations used to validate the flow rearrangement and
the time shifting strategies operates, respectively, on how
the workload is distributed and on when the application
can start. About the application profile refinement the vali-
dation refers to the comparison among available application
configurations.

To control and enact the run-time adaptation strate-
gies we developed a Java-framework freely available on
GitHub7. This framework provides two main classes, i.e.,
the ApplicationController and the ApplicationLocalAgent (the
application-independent part) and two interfaces that the
developers willing to make their application adaptive have
to implement (the application-dependent part). One inter-
face, the ApplicationMetric, needs to be implemented to

7. The framework and its implementation for the case study
discussed in this paper can be found at https://github.com/
ECO2Clouds/r2/tree/master/application-controller

0.00#

2.00#

4.00#

6.00#

8.00#

10.00#

12.00#

baseline# op2mized#

gr
CO

2e
q(

Overhead#

Applica2on#

Fig. 8. Workload rearrangement validation results.

expose the application metrics that, in addition to the in-
frastructure and virtual layer metrics, are relevant for the
application. Implementation of this interface also requires
the connection to the monitoring system as this depends
on the infrastructure where the VMs will be deployed. In
our case, this has been implemented with a connector to the
ECO2Clouds Monitoring Infrastructure. The second inter-
face is the StrategySelector that implements the adaptation
strategy selection policies discussed in Sect. 7. Once the
Application Controller has been customized, an instance
of it runs for each of the application instances, as the role
of the Application Controller, especially at run-time, is to
manage a single application instance. As a consequence,
this configuration easily scales as the Application Controller
does not have to control an increasing number of applica-
tion instances, but it might introduce an overhead, as also
discussed in the next paragraphs.

8.1 Flow rearrangement validation

The goal of this first validation is to verify that executing an
application without (i.e., baseline configuration) and with
(i.e., optimized configuration) the possibility to enable the
flow rearrangement can reduce CO2 emissions. To make
the executions with the two configurations comparable, we
considered the case where the application is deployed only
on the site INRIA in France. This case is the worst one
since due to energy mix mainly based on nuclear, the space
for reduction here is limited. Moreover, focusing only on
one country, we can be sure that the possible resulting
CO2 emissions reduction is not too biased by the different
energy mix associated to the different countries. Finally,
the INRIA site has a peculiar configuration as the installed
hosts are very similar to each other, thus identifying and
consequently exploiting the differences in energy and CO2
emissions to reduce them become more difficult. Finally,
none of the tasks belonging to the application are declared
as optional. In this way, we cannot skip any task to reduce
the response time and, thus, CO2 emissions.

With respect to the baseline configuration, the optimized
configuration enabling the enactment of this adaptation
strategy, requires an additional VM hosting the Application
Controller with 0.5 CPU and 256 MByte memory. The 15
years to be simulated are dynamically distributed among
the 3 VMs dedicated for executing the simulation according
to the approach described in Sect. 6.1. Adding a new VM to

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 12

host the Application Controller introduces additional CO2
emissions considered as overhead.

As the VMs run in a cloud shared with other applica-
tions, the baseline and the optimized configuration have
been executed more than 50 times and the average of CO2
emissions are considered to provide more reliable results.
Fig. 8 reports the results of the validation trail. With the
baseline configuration, the average CO2 emissions for the
eels application is 9.7 grCO2eq, whereas with the optimized
configuration, the total CO2 emission is 7.52 grCO2eq. Thus,
enacting when necessary the workload rearrangement adap-
tation, we can obtain a CO2 emission reduction of 22.4%,
also considering the overhead of 2.52 grCO2eq (33% of
the total) introduced by the Application Controller that
manages the enactment of the adaptation strategy.

8.2 Time shifting

Concerning the second adaptation action, the goal of this
validation is twofold. On the one hand, we want to verify
that using the energy mix patterns gives a good estimation
of the CO2 emissions. On the other hand, we want to quan-
tify the reduction of CO2 emissions obtained by shifting the
execution of the application.

Concerning the first point, we focused on the energy mix
factor in UK, which is more variable than in other countries,
and we assumed to run the application of our case study
only on that site. Energy mix factor has been taken from the
Web site, and for the sake of simplicity, here we focus only
on the information collected in September 2014. Based on
about 100 executions, the monitoring infrastructure reports
that the average energy consumption of 3 VMs executing the
eels simulation for 3 hours is 136.56Wh. Having the energy
consumed, CO2 emissions are obtained by multiplying this
value to the energy mix factor observed during the execu-
tion. Considering the baseline configuration (i.e., application
starts at midnight on Sept. 1st 2014) resulting CO2 emissions
are 188.50 grCO2eq.

As we have two series of energy mix factors, i.e., the real
one and the estimated one, Fig. 9 reports the comparison of
the real and estimated CO2 emissions for our experiments in
case the application is executed in different periods between
Sep 1st and Sep 30th 2014. As reported in the figure, we
can conclude that the proposed estimation of CO2 emissions
based on the usage of the trends of energy mix factor can be
considered reliable, as the average error of our estimation is
1.01% with a worst case of 5.67%.

With the same result, we can also quantify the reduction
of CO2 emissions in case of postponed execution with
respect to the baseline. For example, the optimized config-
uration indicates the possibility to postpone the execution
till the end of the month. On this basis the Application
Controller asks for the current energy mix factor, then uses
the trends to estimate the factor for the whole month. If
the application has been already executed some times in the
past, the Application Controller can use monitored data to
know which is the energy consumed by the application to
estimate its CO2 emission. Otherwise, without losing effec-
tiveness, it uses only the energy mix values. As a result, the
Application Controller has a series of values as the dashed
line in Fig. 9. Here, in the correspondence of the minimum

160$

170$

180$

190$

200$

210$

220$

230$

240$

250$

1/
9/
14
$0
.0
0$

2/
9/
14
$0
.0
0$

3/
9/
14
$0
.0
0$

4/
9/
14
$0
.0
0$

5/
9/
14
$0
.0
0$

6/
9/
14
$0
.0
0$

7/
9/
14
$0
.0
0$

8/
9/
14
$0
.0
0$

9/
9/
14
$0
.0
0$

10
/9
/1
4$
0.
00
$

11
/9
/1
4$
0.
00
$

12
/9
/1
4$
0.
00
$

13
/9
/1
4$
0.
00
$

14
/9
/1
4$
0.
00
$

15
/9
/1
4$
0.
00
$

16
/9
/1
4$
0.
00
$

17
/9
/1
4$
0.
00
$

18
/9
/1
4$
0.
00
$

19
/9
/1
4$
0.
00
$

20
/9
/1
4$
0.
00
$

21
/9
/1
4$
0.
00
$

22
/9
/1
4$
0.
00
$

23
/9
/1
4$
0.
00
$

24
/9
/1
4$
0.
00
$

25
/9
/1
4$
0.
00
$

26
/9
/1
4$
0.
00
$

27
/9
/1
4$
0.
00
$

28
/9
/1
4$
0.
00
$

29
/9
/1
4$
0.
00
$

30
/9
/1
4$
0.
00
$

gr
CO

2e
q(

measured$CO2$

es7mated$CO2$

Fig. 9. Real CO2 emissions vs. estimated CO2 emissions computed
using trends.

value, there is the time in which it is preferable to execute
the application to have lower CO2 emissions. If the user
does not impose any constraint on when the application
should start, the Application Controller realizes that the
best moment is on Sept. 26th at 4:00h where the application
will emit 172.75 grCO2eq instead of 188.50 grCO2eq, (7.97%
less). As an alternative optimized configuration, we ask the
experiment to start in no more that one week (expressing
this constraint in the Application Controller), then the de-
cision of the Application Controller is to run on Sept. 7th

at 23:30h when it is possible to save up to 3.55%. As in
this latter case, as the reduction is not so significant, the
Application Controller can be properly configured to not
postpone the execution if the CO2 reduction is lower that a
threshold decided by the user.

Yet, looking at the figure is also possible to figure out
which is the best scenario, i.e., the greater difference from
when the execution is requested and when it really happens.
In this case, assuming that the user asks for executing the ap-
plication on Sept. 18th at 08:00h, the Application Controller
suggests to shift the execution till Sept. 26th at 4:00h. In this
case, the CO2 reduction is equal to 28.42% (172.75 grCO2eq
instead of 241.38 grCO2eq).

8.3 Application profile refinement validation
The goal of this section is to illustrate how the profile
refinement strategy helps in the selection of the optimal
configuration for the considered case study. We assume the
user has to analyse N years of eels which can be divided
into N tasks. Two basic configuration groups are compared:
(i) (Group 1) One VM for All: only one VM is used to execute
the N tasks; (ii) (Group 2) One VM for Each: one VM is
dedicated to a specific task.

All the tasks in the two groups have synchronous access
to the storage. For simplicity, we also assume that all VMs
are homogeneous. Fig. 10 and Fig. 11 show the correspond-
ing queueing models. There are two stations in each model.
The Storage station is modeled as a queue station since the
data source is shared among tasks. The Application station
(to execute the tasks) is modeled as a queue station in
Group 1 because the VM is shared among tasks (see Fig. 10),
and as a set of delay stations in Group 2 because the VMs
are not shared (see Fig. 11) . The Fork and Join stations

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

Fig. 10. Group 1: One VM for All.

Fig. 11. Group 2: One VM for Each.

perform synchronized access to the storage. Other possible
configurations have been investigated and the details can be
found in [25].

The model inputs include: (i) the number of executed
tasks N; (ii) the number of stations; (iii) the station types;
(iv) the service demand D whose each element is a pair
(Dstorage, Dapp) where Dstorage is the required time for
loading data and Dapp is the required time for executing
a task. Finally, for each involved host used in this val-
idation, a power consumption profile has been obtained
experimentally [25]. Based on the obtained results, for the
sake of simplicity and without losing validity, we use a
host power consumption model approximated linearly to
the CPU usage.

We use the simulation tool JMT [31] to build the queue-
ing models and analyse them to obtain analytical results.

The analysis result shows that, the Group 1 configuration
is dominated by Group 2 in terms of execution time (see Fig.
12). This is explained easily as the Group 1 uses one VM to
execute all tasks. In contrast, Group 1 seems more beneficial
in terms of total energy consumption (see Fig. 13) since
Group 1 uses less resources in performing tasks. However,
the increasing trend of the execution time and the consumed
energy is far different. As the number of tasks increases, the
increase of consumed energy in Group 2 is much larger than
the increase of execution time in Group 1. For instance, in Fig.
13, the consumed energy of Group 2 is seven times more than
Group 1, while in Fig. 12, the execution time of Group 1 is less
than double of Group 2. This suggests that a careful analysis
of the two metrics is needed before choosing a configuration.
Depending on which metric is more important, the user can
prefer a configuration accordingly.

As a conclusion for this case study, assuming that an
unlimited number of resources is available, Group 2 provides
better results in term of the execution time while Group 1
consumes less energy. Therefore, the optimal configuration
is chosen based on the constraints of QoS and energy
specified in the Application Profile.

9 CONCLUSION

This paper presents an approach to reduce the environ-
mental impact of HPC cloud-based applications considering
their whole life-cycle. An adaptation mechanism driven by
an Application Controller provides a support to developers
and users to better configure and execute applications with
the aim of reducing CO2 emissions without loosing in terms

0	

5	

10	

15	

20	

25	

30	

35	

40	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

En
er
gy
	 C
on

su
m
p.

on
	 (K

W
h)
	

Number	 of	 Tasks	

Group	 1:	 One	 VM	 for	 All	 Group	 2:	 One	 VM	 for	 Each	

Fig. 12. Comparison of execution time among configurations.

0	

20	

40	

60	

80	

100	

120	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Ex
ec
u&

on
	 T
im

e	
(m

in
s)
	

Number	 of	 Tasks	

Group	 1:	 One	 VM	 for	 All	 Group	 2:	 One	 VM	 for	 Each	

Fig. 13. Comparison of energy consumption among configurations.

of performance. Three different adaptation strategies are au-
tomatically enacted by the Application Controller driven by
the strategy selector module both at design-time and at run-
time in order to improve the sustainability of the application
while monitoring its performance. The feasibility and the
effectiveness of our approach has been validated on an HPC
application deployed in a cloud environment and resulted
in a significant reduction of CO2 emissions.

Further improvement of this work mainly goes in two
directions. On the one hand, the Application Controller
needs to be improved in order to reduce its overhead and it
also needs to implement the possibility to enact more than
one adaptation action at the same time, as now they are
taken separately. On the other hand, the approach can be
extended to different kinds of applications (e.g., interactive)
and applied to other cloud-specific applications (e.g., map-
reduce) that are quite similar to the presented case study.

ACKNOWLEDGMENTS

This work has been partially supported by the ECO2Clouds
EU-FP7 Project (http://eco2clouds.eu) grant agreement no.
318048. The authors would like to thank the ECO2Clouds
project partners for their support in setting up the testing
environment for the experimental work here described.

REFERENCES

[1] J. Huusko, H. de Meer, S. Klingert, and A. Somov, Energy Efficient
Data Centers: First Int’l Workshop, E2DC 2012, Madrid, Spain, May 8,
2012, Revised Selected Papers. Springer, 2012, vol. 7396.

[2] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A Taxonomy
and Survey of Energy-Efficient Data Centers and Cloud Comput-
ing Systems,” Advances in Computers, vol. 82(2), pp. 47–111, 2011.

[3] M. Vitali and B. Pernici, “A Survey on Energy Efficiency in
Information Systems,” Journal on Cooperative Information Systems,
vol. 23(3), pp. 1–38, 2014.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 14

[4] A. Nowak, F. Leymann, D. Schumm, and B. Wetzstein, “An Archi-
tecture and Methodology for a Four-Phased Approach to Green
Business Process Reengineering,” in Proc. of the ICT-GLOW 2011,
2011, pp. 150–164.

[5] B. Pernici, M. Aiello, J. Vom Brocke, B. Donnellan, E. Gelenbe, and
M. Kretsis, “What IS Can Do for Environmental Sustainability:
A Report from CAiSE’11 Panel on Green and Sustainable IS,”
Communications of the Association for Information Systems (CAIS),
vol. 30(1), pp. 275–292, 2012.

[6] M. Meinshausen, N. Meinshausen, W. Hare, S. C. Raper, K. Frieler,
R. Knutti, D. J. Frame, and M. R. Allen, “Greenhouse-gas emission
targets for limiting global warming to 2◦C,” Nature, vol. 458(7242),
pp. 1158–1162, 2009.

[7] M. Uddin and A. A. Rahman, “Energy efficiency and low carbon
enabler green IT framework for data centers considering green
metrics,” Renewable and Sustainable Energy Reviews, vol. 16(6), pp.
4078–4094, 2012.

[8] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “EnaCloud: An
Energy-Saving Application Live Placement Approach for Cloud
Computing Environments,” in IEEE Int’l Conf. on Cloud Computing,
2009, pp. 17–24.

[9] A. Forestiero, C. Mastroianni, M. Meo, G. Papuzzo, and
M. Sheikhalishahi, “Hierarchical Approach for Green Workload
Management in Distributed Data Centers,” in Euro-Par 2014, 2014,
pp. 323–334.

[10] D. Borgetto, M. Maurer, G. Da-Costa, J.-M. Pierson, and I. Brandic,
“Energy-Efficient and SLA-Aware Management of IaaS Clouds,”
in Proc. of the 3rd Int’l Conf. on Future Energy Systems, 2012.

[11] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
Cloud computing,” Future Generation Computer Systems, vol. 28(5),
pp. 755–768, 2012.

[12] G. Katsaros, J. Subirats, J. O. Fitó, J. Guitart, P. Gilet, and D. Es-
pling, “A service framework for energy-aware monitoring and VM
management in Clouds,” Future Generation Computer Systems, vol.
29(8), pp. 2077–2091, 2013.

[13] R. Giordanelli, C. Mastroianni, M. Meo, G. Papuzzo, and
A. Roscetti, “Saving energy in data centers through workload
consolidation,” White Paper on www.eco4clouds.com, 2014.

[14] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy Aware Consoli-
dation for Cloud Computing,” in Proc. of the 2008 Conf. on Power
aware computing and systems, vol. 10, 2008.

[15] C.-H. Hsu, K. D. Slagter, S.-C. Chen, and Y.-C. Chung, “Optimizing
Energy Consumption with Task Consolidation in Clouds,” Infor-
mation Sciences, vol. 258, pp. 452–462, 2014.

[16] Q. Liang, J. Zhang, Y.-h. Zhang, and J.-m. Liang, “The placement
method of resources and applications based on request prediction
in cloud data center,” Information Sciences, vol. 279, pp. 735–745,
2014.

[17] Z. Abbasi, M. Pore, and S. K. Gupta, “Impact of Workload and
Renewable Prediction on the Value of Geographical Workload
Management,” in Energy-Efficient Data Centers. Springer, 2014,
pp. 1–15.

[18] Z. Liu, A. Wierman, Y. Chen, B. Razon, and N. Chen, “Data center
demand response: Avoiding the coincident peak via workload
shifting and local generation,” Performance Evaluation, vol. 70(10),
pp. 770–791, 2013.

[19] B. Addis, D. Ardagna, A. Capone, and G. Carello, “Energy-aware
joint management of networks and Cloud infrastructures,” Com-
puter Networks, vol. 70, pp. 75–95, 2014.

[20] A. Nowak, U. Breitenbücher, and F. Leymann, “Automating Green
Patterns to Compensate CO2 Emissions of Cloud-based Business
Processes,” in ADVCOMP 2014, 2014, pp. 132–139.

[21] A. Nowak, T. Binz, F. Leymann, and N. Urbach, “Determining
Power Consumption of Business Processes and their Activities to
Enable Green Business Process Reengineering,” in EDOC 2013.
IEEE, 2013, pp. 259–266.

[22] P. Melià, M. Schiavina, M. Gatto, L. Bonaventura, S. Masina,
and R. Casagrande, “Integrating field data into individual-based
models of the migration of european eel larvae,” Marine Ecology
Progress Series, vol. 487, pp. 135–149, 2013.

[23] M. Lenzen, “Current State of Development of Electricity- Gener-
ating Technologies: A Literature Review,” Energies, vol. 3(3), pp.
462–591, 2010.

[24] ECO2Clouds Project Participants, “Good practices for Cloud
Computing Energy Consumption and CO2 Emissions

Optimisations,” Tech. Rep., 2014. [Online]. Available:
http://eco2clouds.eu/wp-content/uploads/D3.5-v1.0.pdf

[25] M. Gribaudo, T. Ho, B. Pernici, and G. Serazzi, “Analysis of the
Influence of Application Deployment on Energy Consumption,”
in Proc. of E2DC, 2014.

[26] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: a packet-
level simulator of energy-aware cloud computing data centers,”
Journal of Supercomputing, pp. 1–21, 2010.

[27] C. Cappiello, S. Datre, M. Fugini, P. Melia, B. Pernici, P. Plebani,
M. Gienger, and A. Tenschert, “Monitoring and Assessing Energy
Consumption and CO2 Emissions in Cloud-Based Systems,” in
IEEE Int’l Conf. SMC, 2013, pp. 127–132.

[28] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The Max-min Hill-
climbing Bayesian network structure learning algorithm,” Machine
learning, vol. 65(1), pp. 31–78, 2006.

[29] M. Vitali, B. Pernici, and U.-M. OReilly, “Learning a goal-oriented
model for energy efficient adaptive applications in data centers,”
Information Sciences, vol. 319, pp. 152–170, 2015.

[30] U. Wajid, C. Cappiello, P. Plebani, B. Pernici, N. Mehandjiev,
M. Vitali, M. Gienger, K. Kavoussanakis, D. Margery, D. Perez,
and P. Sampaio, “On Achieving Energy Efficiency and Reducing
CO2 Footprint in Cloud Computing,” IEEE Transactions on Cloud
Computing, vol. Pre-prints, 2015.

[31] M. Bertoli, G. Casale, and G. Serazzi, “JMT: Performance Engineer-
ing Tools for System Modeling,” ACM SIGMETRICS Performance
Evaluation Review, vol. 36, pp. 10–15, March 2009.

Cinzia Cappiello is an Assistant Professor in
Computer Engineering at the Politecnico di Mi-
lano. Her research interests regard data and
information quality aspects in service-based and
Web applications, Web services, sensor data
management and Green IT.

Nguyen Thi Thao Ho is a Ph.D. student
in Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano. Her cur-
rent research interests include queueing theory,
stochastic modeling applied to Green IS and
Cloud computing.

Barbara Pernici is full professor of Computer
Engineering at the Politecnico di Milano. Her
research interests include information systems
design, adaptive information systems, service
engineering, data quality, and energy efficiency
in information systems. She has been elected
chair of TC8 Information Systems of the IFIP
WG 8.1 on Information Systems Design, and
vice-chair of the IFIP WG on Services-Oriented
Systems.

Pierluigi Plebani is Assistant Professor at
Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano where he
also received the Ph.D. degree in Information
Engineering. He currently belongs to the Infor-
mation Systems group and his research inter-
ests concern Green IS, Adaptive Process-aware
Information Systems, and Cloud-based applica-
tions.

Monica Vitali received the Ph.D. in Information
Technology from the Politecnico di Milano, Italy,
in 2014. She is currently research assistant at
the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano. She is inter-
ested in the topic of Energy Efficiency and sus-
tainability in cloud and data center from an In-
formation Systems perspective, in adaptive and
self-adaptive systems and services, and in Ma-
chine Learning techniques for adaptation.

