
Ontology-based methodology for e-Service
discovery

Devis Bianchini a,∗ Valeria De Antonellis a Barbara Pernici b

Pierluigi Plebani b

aDipartimento di Elettronica per l’Automazione, Università degli Studi di Brescia

Via Branze, 38 - 25123 Brescia, Italy

bDipartimento di Elettronica ed Informazione, Politecnico di Milano

Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy

Abstract

Service discovery is a critical aspect in the Service Oriented Computing approach. A
model, a methodology and a tool environment based on ontologies are proposed in
this paper. The requester and provider perspectives are discussed, both to support
the service publication phase and the search phase. The proposed service ontology is
based on functional aspects and it is organized on three layers, to support traditional
search based on classification such as proposed in UDDI as well as search based
on abstracting service characteristics. In addition, non functional features such as
requester and provider contexts and quality of service are considered to refine the
search results according to the requester requirements.

1 Introduction

Service Oriented Computing (SOC) is a new emergent paradigm on which
service technologies rely. According to [1], Service Oriented Computing is the
computing paradigm that uses services as fundamental elements for develop-
ing applications. The paradigm is based on the service provider and the service
requester as the main actors involved, where the former, on the basis of his
mission and available resources, builds a set of invocable software applications
that provide some functionalities; the latter, on the basis of the service de-
scription provided, invokes and uses such software either in an interactive way
or building suitable service software clients.

∗ Tel. (+39) 030 3715447; fax: (+39) 030 380014
Email addresses: bianchin@ing.unibs.it (Devis Bianchini),

deantone@ing.unibs.it (Valeria De Antonellis), barbara.pernici@polimi.it
(Barbara Pernici), pierluigi.plebani@polimi.it (Pierluigi Plebani).

Preprint submitted to Elsevier Science 22 February 2005

As it occurs in real life, in which traditional services are available everywhere
(e.g., flight booking, stock option reservations, phone calls and so on), in a
virtual service-based environment mechanisms to easily find the interesting
services are absolutely necessary for both the service provider and the service
requester. On the one hand, from the service provider standpoint, the higher
the service reachability, the higher the probability that someone will use it.
On the other hand, the service requester needs to be able to find the more
suitable services with respect to his requirements.

For these matters, the Service Oriented Architecture (SOA) relies on service
descriptions and basic operations (publication, discovery, selection and bind-
ing) to enable the provider to make information available about his services
and the requester to find the appropriate services and use them. Publication,
discovery and selection are based on a Service Directory. The role of such an
actor is to provide methods which (i) can be used by the service provider to
publish the provided services and (ii) can be used by the service requester
to look for the services which satisfy his requirements. UDDI Registry [2] is
the well-known tool available which implements the service directory facilities
as described above. However, even if UDDI allows for browsing the service
registry through different indexes, it does not provide (i) an effective content-
based service discovery, (ii) a match with respect to the context in which the
service operates and (iii) a quality evaluation of the retrieved services. In fact,
services are only organized with respect to pre-defined categories (e.g. unspsc,
naics) and they are not analyzed and described with respect to what they
effectively provide.

To improve service description, the Semantic Web [3] research area provides
a set of interesting methods and tools to augment service description based
on the use of ontologies. As stated by [4], “the idea behind the Semantic
Web is that generators of Web pages or services will create formal declara-
tive descriptions that programs can use to find the appropriate service and
use it correctly”. Therefore, the focus is on adding descriptions to services
using descriptive logics in order to be able to reason about their properties.
The problem of this approach is that it requires the providers to perform
such annotations, on the basis of ontologies commonly agreed upon by wide
communities.

The service-oriented approach has been proposed mainly in an architectural
context in which providers and requesters use systems which are available
most of the time. Here the interaction is mainly web-based and providers are
registered in the registry regardless of their operating conditions. However,
many current applications are developed in highly variable environment, where
mobile devices are becoming an integral part of current information systems,
access to services may depend on the context in which the services are used
and cooperative enterprises combine dynamically available services selecting
the best offers in a given moment.

These applications pose new requirements to the classical service-oriented
approach, in particular: (i) the ability of both abstracting service character-

2

istics from their operating environment and in some cases selecting services
on the basis of their contextual features; (ii) the possibility of selecting ser-
vices both through interactive interfaces and through sophisticated matching
algorithms.

The aim of the present work, supported by the MAIS Project 1 , is to present
how the use of an ontology-based approach can support service publication
and discovery. We propose an approach in which an extended service descrip-
tion is used as a basis for providing service retrieval and publication facilities
in an enhanced UDDI Registry. The ontology-based representation of services
is proposed extending UDDI registration and retrieval functionalities, provid-
ing a semi-automatic organization of services in ontological levels. Therefore,
instead of associating semantic information directly to services, semantic infor-
mation is extracted from published services on the basis of a domain ontology
and used as a basis to provide advanced searching functionalities. In partic-
ular, our solution starts from UDDI Registry and improves its functionalities
providing a service model and a set of methods which allow a content-based
discovery. Moreover, this work concentrates not only on Web Services, but on
e-Services in general: we assume the use of services in multi-channel informa-
tion systems, in which the same service could be provided and used through
several channels, with different networks, devices and context characteristics.
Therefore, the service retrieval functionalities proposed in this paper focus
not only on functional aspects, but also on the context of invocation and the
requester profile.

The paper is organized as follows: in Section 2, we present the e-Service
model; in Section 3, we propose a three-layer e-Service ontology architecture;
in Section 4, e-Service discovery based on the proposed ontological framework
is discussed and in Section 5 the architecture underlying our work is presented.
Finally, related work is discussed in Section 6, while Section 7 concludes the
paper and outlines future research directions.

2 E-Service model

The MAIS Project analyzes the services in the context of multichannel
information systems development [5]. In such systems, services may be invoked
by a variety of different users, using different devices with possibly wireless
connections, including not only portable computers, but also PDAs and mobile
phones. In this way, the typical Web Service, where the Web represents the
communication channel, is now substituted by the more general e-Service,
where the same application logic can be exposed through several channels.
In such mobile information systems, even if the overall executing process is
predefined, the set of active users, as well as the e-Services invoked, may
change. As a running example, in the rest of the paper we consider a typical

1 Multi-channel Adaptive Information Systems.
Web site: http://www.mais-project.it

3

travel support process, where the end-user wants to reserve a hotel and a
flight for a trip. In particular, we also want to handle, in an automatic or
semi-automatic way, particular situations, like cancellation of a booked flight,
which force the travel agency to reschedule both flights and other arrangements
for its customers. It must also be able to provide such information timely to
the involved users and service providers. In the present paper, we will focus
mainly on issues related to service selection on the basis of given requests, with
the ultimate goal of providing a flexible and highly adaptive service invocation
environment.

The implementation of a system which realizes service discovery necessarily
requires a complete and precise definition of e-Service. In our approach, e-
Service description is addressed both from the service provider and the service
requester perspective:

• e-Service provider perspective, which allows for specifying the functionality
and contextual characteristics from the provider side;

• e-Service requester perspective, which allows for specifying the service re-
quest both in terms of requested functionalities and of requester operating
environment and preferences.

Providing both perspectives enables to characterize in a specific way the re-
quester requirements, which may be different from the e-Service characteristics
as specified by the service provider.

Moreover, services may be provided through different channels, with dif-
ferent quality characteristics. In this situation, it is important to define not
only the functionalities provided by the e-Services, but also the quality re-
lated aspects and the context in which the services are both made available
and used.

2.1 E-Service provider perspective

From a service provider perspective, the model has to define, as shown in
Figure 1, who offers the service (Service Provider), what the service performs
(Functional Description) and on which Channels the service is available. More-
over, the service could be simple or composed by a set of services organized
according to a composition framework [6–8].

The functional description is provided in terms of invocable Operations and
exchanged Input/Output parameters, which may be described in a WSDL [9]
specification.

To specify the observable behavior of the service, we specify the (partial)
order in which the available operations can be invoked through pre- and post-
conditions. Each operation is associated to a set of PreConditions and Post-
Conditions, that predicate on the Inputs and Outputs parameters of the oper-
ation. The former must be verified before the execution of the operation, while
the latter are satisfied after the execution. For instance, a flight payment op-
eration could have a pre-condition “flight-reserved”. Pre- and post-conditions

4

Fig. 1. Service provider perspective model.

can also be defined on whole services.

It is important to note that such a functional description relies only on the
elements the provider identifies as “exportable” or, in other words, on the
elements that should be made visible for a potential user to know in which
way he can invoke the service. The implementation details are not represented
by this model.

About non-functional aspects, each e-Service is characterized by a set of
quality parameters. All the model is enriched considering the quality aspects.
In particular, the channel, the provider and the service can be also detailed
with respect to quality dimensions. It is worth noting that the involved qual-
ity dimensions strictly depend on the application and domain in which the

5

service, provider and channel operate. For this matter, since it is almost im-
possible to define a set of quality dimensions valid for all the possible services,
we provide a more general solution. In particular, according to [10], we sup-
pose that, for each kind of service, a community exists that defines which are
the relevant aspects. Task of this community is to identify the set of relevant
quality dimensions for such particular class of services, where a quality dimen-
sion is defined by the 〈name, admissible value〉 pair, where name represents
a unique parameter identifier, whereas admissible value represents the range
of values suitable for the parameter. In this way, whoever wants to implement
a service belonging to this class must refer to this set of quality dimensions
in order to characterize its quality. In the same way, we suppose the existence
of a set of communities, one for each kind of channel and a unique commu-
nity which defines the quality of the provider (for us all the providers belong
to the same class and we can use the same quality specification). Such an
assumption reflects what occurs in real life, where, even if the community is
not well defined, everybody agrees on a set of aspects to evaluate the quality
of a given service. For example, considering an e-Service which provides an
airport digital map, possible quality parameters could be: color-depth, resolu-
tion, width, length. On the contrary, if we consider a hotel reservation service,
its quality could be evaluated with respect to the number and type of credit
cards accepted to pay for the reservation. In this case, the range of admissible
values is a discrete set composed, for example, by the list of the most accepted
credit card companies.

In this way, our e-Service model includes on the provider side:

• a QoS (Quality of Service) definition, in which a set of admissible values is
assigned to the quality dimensions identified by the related community;

• a QoP (Quality of Provider) definition, in which a set of admissible values
is assigned to the quality dimensions defined by the Provider Community;

• a QoC (Quality of Channel) definition, for each channel available to invoke
the e-Service, where a set of admissible values is assigned to the quality
dimensions defined by the community of that particular channel.

A classification of possible general quality dimensions is being generated
within the MAIS Project to represent qualities related to these classes [11].

2.2 E-Service requester perspective

¿From a service requester perspective, the model concentrates on the User
definition, as shown in Figure 2. The requester of an e-Service is characterized
by its Profile and by the Contexts in which the user can be and (by means of
the current association) in which the user, in a given moment, operates.

The requested service is defined in terms of functional and non-functional
aspects, as defined in the service provisioning perspective. The profile has a
static and a dynamic component: the first one to render those properties that
are statically set by the user (usually during the registration phase), the second

6

one to characterize all information that is collected while using the application.
The static profile is defined by means of a set of user preferences such as Role,
which identifies the role played by the user while using the application, its
Expertise and Ability on the application and a set of Generic Preferences to
add application-specific characterizations to the profile. The hypothesis is that
roles or expertise define the minimum profile, which can always be enriched
with further information: each Generic Preference has a name and value to
let the designer render and “quantify” any property.

A definition of context is provided starting from previous work in the lit-
erature, such as UWA [12], and enriched with the channel definition. Here
the context is defined by a Location, a Time Zone and the available Channels.
Location can be zero or more Geo Positions, i.e., latitudes and longitudes, Dis-
tricts, e.g., special-interest areas, Towns and Countries. Moreover, a Location
can be associated with a set of Properties: a general-purpose mechanism to
add further information to the context description. For instance, we could use
a Property to specify weather conditions. Time Zone describes the Context
with respect to its time information, i.e., its offset from Greenwich mean time,
and the daylight saving time.

• device, defined according to a subset of the attributes included in CIM [13]
model;

• network, considering an end-to-end link, we provide an abstraction of the
several elements which are used to interconnect the provider with the user
device (last mile excluded), characterized by the quality of service aspects;

• network interface, it represents the last mile of the connection and thus
defines how the device could be connected to the network and how such a
connection could influence the quality the user perceives;

• application protocol, it specifies the application protocol supported by the
device according to a given network and network interface (e.g., HTTP,
SOAP, SMTP).

As stated for the provider perspective, also the service requester specifies
the non-functional aspects through the quality parameters defined by the ser-
vice community. In particular the user can characterize the requested e-Service
through only a subset of the quality parameters suggested by the service com-
munity considering only the interesting aspects. Using a hotel reservation ser-
vice, a user could be interested only on the creditcard parameter and he
requires that such a parameter must include at least one of the credit cards
companies accepted. In this way, the user does not impose constraints on the
other possible parameters, such as the cost of a possible reservation cancella-
tion.

About quality definition, whereas in the provider perspective the model de-
fines the quality offered, here the e-Service model identifies which are the needs
of the user. Using the same approach described before, the user is aware about
the existence of the communities and, in particular, about the service com-
munity. According to that, we assume that the user is able to define a precise

7

Fig. 2. Service requester perspective model.

8

QoS for each requested service, where for each quality dimension the admis-
sible values represent the requested quality level. It is important to highlight
that the service is connected to the user through different channels, which also
influence the QoS. The network latency, for example, is different for a wireless
connection rather than a wired one, so a typical QoS dimension (e.g., through-
put) can be differently perceived by the user. For this matter the QoS required
by the user cannot be directly matched with the QoS defined by the provider.
According to that (and also according to the literature [14]) we introduce the
Quality of Experience (QoE), where:

QoE = f(QoS, QoC, QoP)

In this way, for each triple 〈service, channel, provider〉 the user is able to
effectively calculate which is the QoS that, during the invocation, the user can
perceive. On the basis of the obtained values, the user will be able to define
the admissible value of the quality of service dimensions for the service offered
by a particular provider through a given channel. Even if the QoE is presented
as a generic function, it is possible to find rules able to state the dependency
among the different quality dimensions. For example, if the service provides
streaming data, it is easy to state that the outgoing dataflow from the service
cannot be greater than the bandwidth of the selected channel. In this way,
simplifying and supposing that the service is able to provide an output flow of
1Gb/s, the user cannot obtain a flow rate greater than 100Mb/s if an Ethernet
connection is used and 11Mb/s if a wireless LAN is used. Obviously, QoE=QoS
holds whenever the quality parameters are not affected by the channel as, for
instance, the credit card restriction described above.

3 Three-layer domain service ontology

In the previous section, we have introduced several elements to describe
an e-Service: (i) the functional description to specify its operational aspects,
(ii) the quality offered by the provider and requested by the user taking into
account the involved channels, (iii) the user profiles and (iv) the context in-
formation that can be exploited to identify the particular conditions in which
an e-Service is used. In the remainder of the paper we will show how a ser-
vice ontology, that properly organizes e-Services on three different layers of
abstraction, can be exploited to enhance service discovery on the basis of user
functional requirements; further refinements of the discovery process can be
performed by taking into account context information and, finally, selecting
only those services that match user quality requirements.

In the service ontology, we introduce three distinct concepts, according to
an increasing level of abstraction:

• concrete services, that are directly invocable services and that are featured
by their public WSDL interface, which is used to group them on the basis
of their functional similarity (as explained in the following) and by bindings

9

to specific implementations;
• abstract services, that are not directly invocable services, but represent the

functionalities of sets of similar concrete services (each abstract service is
associated to a corresponding cluster of similar concrete services); abstract
service functionalities are also described by means of a WSDL interface and
are obtained from the concrete service operations by means of an integration
process; mapping rules are maintained among the abstract operations and
the original concrete operations; abstract services are related to each other
by semantic relationships, as explained below;

• subject categories, that organize abstract services into a standard available
taxonomy (such as unspsc or naics) to provide a topic-driven access to
the underlying services.

According to the distinction made above, the service ontology contains con-
crete services, abstract services and subject categories organized into three lay-
ers (called Concrete, Abstract and Category layer, respectively). This organi-
zation of e-Services is meant to support service provisioning properly adapted
to changes in user context and quality conditions. Its main issue in the frame-
work of the MAIS Project is to enhance finding of generic services (abstract
services) describing the required functionalities that can be actually provided
by several specific existing services (concrete services). Thus, abstract ser-
vices are intended to shorten the way towards a variety of alternative concrete
services that can be invoked. Context information and quality requirements
further refine and filter the set of candidate concrete services. In addition,
subject categories give the user a mechanism for an easy access to the under-
lying levels on the basis of standard topics. Concrete services are stored in
UDDI Registry, that is properly extended (through the tModel element [2])
to contain service descriptions according to the service model proposed in
Section 2.

3.1 Concrete layer construction

In [15] a methodology to compare services on the basis of their functional
description is proposed in order to establish semantic relationships among
them on the basis of their degree of similarity. The similarity between ser-
vices is evaluated through the computation of coefficients obtained by com-
paring input/output parameters that services exchange during their execution
(Entity-based similarity analysis) and operations that they are able to perform
(Functionality-based similarity analysis) [16,17].

The similarity analysis is supported by a domain ontology used to anno-
tate I/O parameters and operation names. In this ontology, terms are orga-
nized by means of weighted terminological relationships (synonymy, general-
ization/specialization relationships) both extracted from a pre-existing, do-
main independent basic ontology (e.g., WordNet) and supplied by a domain
expert.

The domain ontology can be viewed as a graph 〈N , E〉, where N is the

10

set of nodes (i.e., terms) and E the set of edges (i.e., relationships between
terms). Each edge is represented in the form 〈(nh, nk), t, σ〉, where nh ∈ N
is the source node of the relationship, nk ∈ N is the destination node, t is
the kind of relationship and σ ∈ (0, 1] is a weight associated to that kind of
relationship. Different kinds of relationships present different implications for
similarity; in particular, we have σSY N > σBT/NT , since synonymy expresses a
higher semantic connection between terms than the other kind of relationship.
In our experimentation, σSY N = 1 and σBT/NT = 0.8. Two terms (nodes) can
be related by a chain of relationships: we call path of length l between two nodes
n, n′ ∈ N a finite ordered sequence of edges 〈e1, e2, . . . el〉 (with e1, e2, . . . el ∈
E), where the source node of e1 is n and the destination node of el is n′, denoted
with n →l n′; the length l is the number of relationships in n →l n′. The
strength of n →l n′ is the value of the function τ : Paths(〈N , E〉) → (0, 1] that
associates to →l the product of the weights of all the relationships belonging
to it, where Paths(〈N , E〉) is the set of all the paths on the ontology.

Definition (Name Affinity Coefficient) The Name Affinity Coefficient
of two terms ni and nj ∈ N , denoted by NA(ni, nj), measures the strength of
path between them in the domain ontology, computed as follows:

NA(ni, nj) =

1 if ni = nj

τ(→l) if ni 6= nj ∧ ni →l nj , l ≥ 1

0 otherwise

(1)

Between two nodes in the ontology there can exist more than one path and
in this case the path with the highest strength is chosen. We say that ni and
nj have name affinity (ni ∼ nj) if NA(ni, nj) ≥ α, where α > 0 is a given
threshold imposed to filter terms with high degree of affinity.

We group together services that have the same or similar I/O parameters
or have the same or similar operations; given the domain ontology, service
similarity is evaluated on the basis of I/O parameters and operation names
contained in the descriptors associated with services. For this purpose, we
introduce a set of similarity coefficients for services.

Definition (Entity-based similarity coefficient) Given two services Si

and Sj, we denote with IN(Si) and IN(Sj) (resp., OUT (Si) and OUT (Sj)) the
sets of input parameter names (resp., output parameter names) of Si and Sj .
The Entity-based similarity coefficient of Si and Sj , denoted by ESim(Si, Sj),
is the measure of affinity between names of I/O parameters of Si and Sj ,
considered in their totality, that is

ESim(Si, Sj) =
2 · Atot(IN(Si), IN(Sj))

| IN(Si) | + | IN(Sj) |
+

2 · Atot(OUT (Si), OUT (Sj))

| OUT (Si) | + | OUT (Sj) |
(2)

where Atot(IN(Si), IN(Sj)) (respectively, Atot(OUT (Si), OUT (Sj))) denotes
the total value of affinity between the pairs of input (respectively, output)

11

parameters in Si and Sj , and | | denotes the cardinality of a given set. Atot is
obtained by summing up the values of name affinity coefficients for all the pairs
of input/output parameters that have name affinity in the domain ontology.
Furthermore, we require that each parameter name participates at most in
one pair for the Atot evaluation. ESim(Si, Sj) assumes value 0 when no pairs
of I/O parameters with name affinity are found, one from Si and one from Sj ,
while it is 2 when Si and Sj have the same input and output parameters.

Definition (Functionality-based similarity coefficient) Given two ser-
vices Si and Sj, we consider each pair of operations opi and opj , one from Si

and one from Sj . We denote with IN(opi) and IN(opj) (resp., OUT (opi) and
OUT (opj)) the set of input parameters (resp., output parameters) of opi and
opj. The operation similarity coefficient between opi and opj is computed as
follows

OpSim(opi, opj) = NA(opi, opj) +
2 · Atot(IN(opi), IN(opj))

| IN(opi) | + | IN(opj) |
+

2 · Atot(OUT (opi), OUT (opj))

| OUT (opi) | + | OUT (opj) |
(3)

We note that OpSim(opi, opj) ∈ [0, 3] since it is the sum of three elements in
the range [0,1]. It is 0 when there is no affinity between operation names and
I/O parameter names of two operations, while it is 1 when two operations have
the same name and the same I/O parameters. We say that two operations opi

and opj are similar, denoted by opi ∼ opj , if the following conditions hold: (i)
OpSim(opi, opj) ≥ γ, where γ > 0 is a similarity threshold set by the domain
expert; (ii) each of the three terms on the right hand side of (3) is greater
than 0.

The Functionality-based similarity coefficient of two services Si and Sj, de-
noted by FSim(Si, Sj), is the measures of similarity of their operations, com-
puted as follows

FSim(Si, Sj) =
2 ·

∑

h,k OpSim(oph, opk)

| OP (Si) | + | OP (Sj) |
(4)

where oph (respectively opk) denotes an operation of Si (respectively of Sj),
oph ∼ opk holds and | OP (Si) | and | OP (Sj) | denote the number of oper-
ations of Si and Sj , respectively. Note that FSim(Si, Sj) ∈ [0, 3], since each
term OpSim(oph, opk) ∈ [0, 3].

Finally, the Global similarity coefficient of two services Si and Sj, denoted
by GSim(Si, Sj), is the measure of their level of overall similarity computed
as the weighted sum of the Entity-based and Functionality-based similarity
coefficients as follows:

GSim(Si, Sj) = w1 · NormESim(Si, Sj) + w2 · NormFSim(Si, Sj) (5)

12

where GSim() ∈ [0, 1] since NormESim() and NormFSim() are respectively
the values of ESim() and FSim() normalized to the range [0, 1]; weights w1

and w2, with w1, w2 ∈ [0, 1] and w1 + w2 = 1, are introduced to assess the
relevance of each kind of similarity in computing the Global similarity coeffi-
cient. The use of weights in GSim(Si, Sj) is motivated by the need of flexible
comparison strategies. For instance, to state that the Entity-based similar-
ity and Functionality-based similarity have the same relevance, we choose
w1 = w2 = 0.5.

If this value is equal or greater than a threshold given by experimental
results, Si and Sj are grouped in the same set or cluster. Given a threshold
φ, a cluster Cl is a set of concrete services Σ = {Sj}, j = 1, ..n, where
GSim(Sj , Sk) ≥ φ, for each Sj , Sk ∈ Σ and k 6= j. Clustering is performed
following a traditional hierarchical procedure [18].

3.2 Abstract layer construction

In the Abstract layer, abstract services are chosen to represent the func-
tionalities of concrete services in each cluster. The abstract service interface is
obtained with an integration process performed on the interfaces of the con-
crete ones belonging to the cluster corresponding to the abstract service. In
particular, the set of defined functionalities is “minimal”, that is, operations
in the abstract service interface are only those common to all the services in
the cluster. The designer can force additional operations considered relevant
because belonging to most services of the cluster.

Moreover, mapping rules are defined to relate operations in the abstract
service with the corresponding ones in the concrete services. For each oper-
ation of the abstract service a table representing the mapping rules is built.
Such a table has three columns: operation name, input data names and out-
put data names. The first row is populated with the information about the
abstract service, whereas the following ones represent the information about
the concrete services in the corresponding cluster. In this way we can compare
the names used in the abstract service to identify both the operation and the
exchanged data with respect to the names used in the concrete services.

An association link is maintained between each abstract service and the
corresponding cluster. Two kinds of semantic relationships are added between
abstract services:

• is-a, that holds when an abstract service offers at least the same func-
tionalities of another one; we say that, given two abstract services Sa1

and
Sa2

, (Sa1
is-a Sa2

) if and only if for each operation op2 in Sa2
there exists

an operation op1 in Sa1
where NA(op1, op2) ≥ α, the set of op1 outputs

includes the set of op2 outputs and the set of op2 inputs includes the set of
op1 inputs;

• is-composed-of, that is obtained when an abstract service can be viewed
as the composition of other abstract services; we say that, given abstract

13

services Sa1
and Sa2

. . . San
, (Sa1

is-composed-of {Sa2
. . . San

}) if and only
if for each operation op1 in Sa1

there exists an operation op2 in Sa2
or Sa3

or
. . . or San

such that NA(op1, op2) ≥ α, the set of op2 outputs includes the
set of op1 outputs and the set of op1 inputs includes the set of op2 inputs;
the operations in Sa2

. . . San
constitute a partition of the set of operations

in Sa1
.

At the moment, semantic relationships are derived with the support of the
domain expert; future efforts will be directed to the semi-automatic derivation
of them. Semantic relationships will be properly used during the discovery
process, as shown in Section 4.

3.3 Category layer construction

In the Category layer, a standard classification of services is considered to
give users a topic-driven access to the underlying services. We considered the
unspsc classification [19] to organize services in a commonly accepted service
taxonomy in UDDI Registry, but this taxonomy is not the only existing effort
for service classification and the choice of a different one could be made, since
our approach is general enough from this point of view. Each abstract service
is associated to one or more service categories in the taxonomy, maintaining
an association link between them.

During the construction of the three-layer service ontology the designer is
supported by a software tool environment, artemis [20], that evaluates by
means of semi-automatic techniques the coefficients we introduced. artemis

offers a value-added semi-automatic system that facilitates the ontology con-
struction in a dynamic, highly evolving environment.

3.4 Running example

As application scenario, we consider a traveler who has to travel for business
to Riga. His functional requirements concern the reservation of a flight from
Milan to Riga and a hotel booking in the city; suppose that he does not want
to spend too much for the air transfer and the hotel accomodation, so he
requires a low-cost flight and a Latvian hotel that has no more than three
stars. Finally, he would prefer to reserve the flight and book the hotel room
by means of his credit card.

In this scenario, we consider a portion of three-layer service ontology, where
flight reservation services, low-cost flight reservation services and hotel book-
ing services are organized as shown in Figure 3. In particular, we suppose
that there exist services that offer only flight reservation facilities, services
that offer only hotel booking facilities and air travel services that offer both
of them. In the portion of service ontology shown in Figure 3, ten concrete
services are grouped into four clusters on the basis of their functional features
and four abstract services representing the clusters are organized by means

14

Fig. 3. A portion of three-layer service ontology for the running example.

of semantic relationships: Reserve Low Cost Flight abstract service is gen-
eralized by the Reserve Flight one (is-a relationship), while Reserve Air

Travels service groups functionalities both of Reserve Flight service and
Reserve Hotel service (is-composed-of relationship). These abstract ser-

15

vices are related to Air Transfer and Hotel Services standard categories.
In the figure, we have omitted abstract functionalities inherited by means
of semantic relationships. So, for example, Search Flight in the Reserve

Flight service is also an operation of Reserve Low Cost Flight and Hotel

Booking in the Reserve Hotel service is also an operation of Reserve Air

Travels. Similarly, concrete operations integrated into the abstract ones are
not represented for space restriction in the concrete services.

In the following section, our aim is to show how we can exploit organization
of concrete and abstract services offered by the service ontology to support
the user during the service discovery process.

We can summarize the user functional, quality and contextual requirements
as follows:

Flight Reservation request Hotel Booking request

Category flight, reservation Category hotel, booking

Operation Reserve Flight Operation Book Hotel

Inputs creditCardNumber Outputs booking confirmation

Outputs flightElectronicTicket Context

Context Location Riga

Location Milan, Riga Quality

Quality Parameter HotelStars

Parameter FlightCost Constraints LessThanEqual(3)

Constraints LessThanEqual(500) Parameter ResponseTime

Units Euro Constraints 1

Units Day

4 E-Service discovery

In this section, we show how to use functional matching techniques, user
quality requirements, context information and the service ontology structure
to enhance service discovery. Hereafter, we will use the notation Σcand to in-
dicate the set of candidate abstract services to be presented to the user and
with Σ̄cand the set of corresponding concrete ones. Note that we populate Σ̄cand

starting from Σcand by means of association relationships among abstract
and concrete services.

Functional, context and quality comparison are used to perform several
kinds of searching modalities that are made available by the proposed plat-

16

form, extending functionalities of traditional UDDI Registry: we distinguish
among search by category, search by functionality and full search. Different
searching modalities can be combined to enhance service discovery and to
make it more precise.

4.1 Search by category

This kind of search can be performed by the human user by browsing the
subject category taxonomy at the top layer of the ontology and is very close
to UDDI Registry searching facilities. Subject categories allow a preliminary
filtering of candidate abstract services, that can be further refined by using
other search modalities.

The result of this phase is the set Σcand of candidate abstract services that
are related to the selected categories, ordered with respect to some predefined
criteria:

• abstract services can be ordered in a decreasing way with respect to the
number of selected categories they belong to;

• if there exists an is-a relationship between abstract services, the more
general ones are presented before the other ones;

• composite abstract services, i.e., related to other services by means of the
is-composed-of relationship, are presented before the component ones.

Example. Suppose that user, browsing the standard taxonomy, selects the
Travel Service > Transportation Service > Air Transfer and Travel Service >

Accomodation Service > Hotel Service categories. All abstract services related
to them are proposed, in this case Σcond = {Reserve Air Travels, Reserve
Hotel, Reserve Flight, Reserve Low Cost Flight}, displayed in this order
since (i) the first one (Reserve Air Travels) belongs to both the selected
subject categories and is composed by Reserve Flight and Reserve Hotel

services, (ii) the abstract service Reserve Flight is more general than the ab-
stract service Reserve Low Cost Flight. The order of Reserve Hotel ser-
vice with respect to Reserve Flight and Reserve Low Cost Flight is not
relevant.

4.2 Search by functionality

This search modality is performed on the abstract layer and returns an or-
dered set of candidate abstract services that are functionally similar to the
requested one. Requested service SR is expressed as the set of desired opera-
tions and I/O entities, with the support of the domain ontology introduced in
Section 3. Similarity coefficients proposed in Section 3 are then exploited to
evaluate the functional similarity between SR and each abstract service Sak

.
In particular, we consider the global functional similarity coefficient between
SR and Sak

, that we rename as GSimR(Sak
) and it is computed as shown in

17

the equation (5). Abstract services in Σcand are ordered on the basis of GSimR

values.

Example. If we consider operations provided by the Reserve Hotel ab-
stract service and the operations required by the user, we have that the Book

Hotel required functionality matches with Hotel Booking operation, but the
Reserve Flight requested functionality does not match with any operations
provided by the Reserve Hotel service. In a similar manner, we can evaluate
this matching for the other abstract services with the required operations and
we obtain the following similarity values:

Abstract Service Sak
GSimR(Sak

) value

Reserve Air Travels 0.85

Reserve Flight 0.55

Reserve Low Cost Flight 0.55

Reserve Hotel 0.55

The abstract services are ordered on the basis of GSimR values and, in the
case of very close values, exploiting the semantic relationships between them.
Also in this case, Reserve Flight is proposed before the Reserve Low Cost

Flight one, since it is more general; the order between these two services and
the Reserve Hotel service is not relevant because no semantic relationships
exist between them.

The user can choose, for example, the first proposed abstract service (Reserve
Air Travels) and only the concrete services that belong to the correspond-
ing cluster are presented to him (in our example, eDream and ViagginRete

concrete services).

4.3 Full search

This search modality starts from a functional comparison between requested
and offered abstract services. Context information and quality requirements
are then used to further reduce the set Σ̄cand of candidate concrete services
proposed to the user. In fact, the analysis of the functional aspects of an e-
Service is only one of the required steps to realize a useful service discovery
mechanism. A potential user searches for a service that not only satisfies his
requirements in terms of provided functionalities, but also guarantees a given
quality of service level and respects the context in which the service will be
used.

18

4.3.1 Context comparison

Focus of this phase is to exclude from the Σ̄cand the services which do not
satisfy the context constraints. According to the context definition discussed
in Section 2, this analysis has to take into account the time-zone, the location
and the channel constraints expressed by the user. In particular, an “inclusion”
property is introduced for each of these constraints. So, given the requested
e-Service SR and a generic concrete e-Service Si belonging to the Σ̄cand, Si

still remains in Σ̄cand after the context comparison if Context(SR) is included
in Context(Si) where:

Context(SR) ⊆ Context(Si) iff T imeZone(SR) ⊆ T imeZone(Si) ∧

Location(SR) ⊆ Location(Si) ∧

Channel(SR) ⊆ Channel(Si) (6)

The TimeZone inclusion is defined in a natural way imposing that Si is up
during the interval of time defined by the SR.

About the Location, the inclusion has to take into account the different
levels in which the location is defined. In this way, Si has to cover at least the
area required by SR. Thus we define:

Location(SR) ⊆ Location(Si) iff

Location(SR) = ∅

Location(SR) = Location(Si) ∧

CSR
⊆ CSi

(7)

CSR
⊆ CSi

iff

CSR
= ∅

CSR
= CSi

∧ TSR
⊆ TSi

(8)

TSR
⊆ TSi

iff

TSR
= ∅

TSR
= TSi

∧ DSR
⊆ DSi

(9)

DSR
⊆ DSi

iff

GSR
= ∅

GSR
≃ GSi

(10)

where:

• CSi
is the Country of Si

• TSi
is the Town of Si

• DSi
is the District of Si

• GSi
is the GeoPosition of Si

As it can be noted, the comparison between the GeoPosition does not require
a strict equivalence. According to the wanted precision and the tolerance of
the GPS instruments, the equivalence can be re-defined.

19

With respect to the Channel, an inclusion property definition similar to that
defined for the other two context dimensions is not possible. On the contrary,
with the help of the domain expert, it is more useful to identify a set of com-
patibility rules that state when a type of channel is compatible with another
one. In this way Channel(SR) ⊆ Channel(Si) if the two channels either are
the same or, according to the compatibility rules, are considered compatible.
The rules are defined according to the knowledge which characterizes the net-
work and device community. For example, we can state that a PC connected
to a wired LAN can be considered compatible with respect to a PC connected
to a wireless LAN. In this case, from a functional standpoint, a compatibility
relationship exists, but the user could prefer one of the two channels with
respect to the available bandwidth. This kind of analysis is not performed in
this step, but it is an investigation area of the quality comparison discussed
in the following paragraph.

Example. If we are looking for a Reserve Low Cost Flight to Riga, the
previous phase returns all the concrete services belonging to the Cl1 cluster,
i.e., Σ̄cand = {RyanAir, AirBaltic}. Now, let us suppose that the RyanAir

is specialized in flights among the Western European cities, whereas the Air-
Baltic, as the name suggests, is specialized in the Baltic region.

Supposing that an algorithm able to process and verify the relationship
among the worldwide cities is available, the relationship (9) is not satisfied for
the RyanAir service, since Riga belongs to the Eastern Europe. In this way,
the Σ̄cand becames Σ̄cand = {AirBaltic}.

4.3.2 Quality comparison

The quality model presented in the Section 2 allows the user to define,
through the QoE, which is the requested quality, according to the same quality
parameter set defined for the QoS and taking also into account the effects of
the channels. Thus the SR can define the expected quality (QoE(SR)) in two
ways, i.e., dependent or independent from a particular channel.

In the first case, starting from the QoS defined for a Si ∈ Σ̄cand, the QoE(Si)
is computed only about the channels defined in the SR context. Obviously, at
this stage all the Si can support the requested channel, since the context com-
parison has already verified this restriction over Σ̄cand. Once QoE(Si) is com-
puted, it is compared with the quality values requested by the user QoE(SR)
in order to verify that all the quality parameter values satisfy the requested
quality parameter value.

In the second case, if SR does not specify any channels, it means that the
QoE(SR) should be valid for at least one of the Si available channels. So, the
QoE(Si) is computed for all the channels in Channel(Si) and the obtained
values are compared with the QoE(SR). In this way, for each Si we could have
a set of channels which satisfy the quality constraints. It is worth nothing
that this kind of selection adds a new leverage about the adaptivity during

20

the service invocation. In fact the service, in case of quality decreasing in the
current channel, can switch among the other available channels in order to
maintain the quality level above the requested one.

Example. The requested hotel booking service must provide a response at
least within one day, but no specific channel is requested. For this matter, we
have to find, for each service in the Σ̄cand = {HotelKungsgton Stockholm,
HotelRigaVienisca, HotelOrna} (we are supposing that all of these services
provide the requested functionalities), which are the channels which satisfy
the QoE(SR). Actually, after the context comparison, the Hotel Kungsgton

Stockholm is already deleted from this set, thus the quality comparison is
performed only for the services Σ̄cand = {HotelRigaVienisca, HotelOrna}.
Now, let us suppose that both services can be invoked through the Web and
that only the Hotel Orna also via GSM SmartPhone, with the following QoE:

Service Channel Response Time

Hotel Orna Web 2 days

Hotel Orna GSM 6 hour

Hotel Riga Vienisca Web 10 sec

In this case, the Hotel Orna can be invoked only using the SmartPhone,
since the Web channel is affected by a lot of manual back office work which
delays the response. Otherwise, the only available channel for Hotel Riga

Vienisca service can be used.

4.4 Exploiting semantic relationships for service discovery

Semantic relationships among abstract services (is-a and is-composed-of)
can be exploited to support the user in finding services that better fit his re-
quirements. In fact, if a proposed service does not satisfy user requirements,
semantic relationships can be used to propose other abstract services (and
corresponding concrete ones) related to the previously selected one. For ex-
ample, the functionality required by the user could be performed not only by
a single service, but also by a composition of services.

4.4.1 Generalization/specialization

Suppose that no concrete services in the selected cluster satisfy user quality
requirements or context constraints: the abstract service that represents the
cluster is considered and, if other abstract services exist that specialize it,
their corresponding clusters of concrete services are presented to the user. In
fact, if an abstract service Sak

specializes another abstract service Saj
, then it

provides at least the same functionalities, as exposed in Section 3.

21

Thus, the set of candidate abstract services is extended as follows:

Σ′

cand =Σcand ∪ {Sak | (Sak is− a Saj), ∀Sak ∈ Σcand} (11)

Example. If concrete services associated to the Reserve Flight abstract one
do not match user cost requirements, the is-a relationship could be exploited
and the set of concrete services represented by the Reserve Low Cost Flight

abstract one are proposed to the user, that is, Σcand = {Reserve Flight},
Σ′

cand = {Reserve Flight, Reserve Low Cost Flight}, Σ̄′
cand = {RyanAir,

AirBaltic}. Note that Σ̄′
cand contains only concrete services belonging to Cl1,

since concrete ones in Cl2 did not respect quality and/or context constraints.

4.4.2 Composition

The same considerations made above can be repeated in the case of com-
position relationship, where Saj

is the composite service and Sak
the union of

component services: the component services can be considered and proposed
together to the user. The set of candidate abstract services becomes:

Σ′

cand =Σcand ∪ {Sah | Sah ∈ σ ∧ (Saj is− composed − of σ), (12)

∀Saj ∈ Σcand}

Example. In the running example, if any concrete service corresponding to
the Reserve Air Travels abstract service does not satisfy the user quality
requirements or context information, then the is-composed-of relationship
is exploited to propose to the user the concrete services associated to the
Reserve Flight and the Reserve Hotel abstract ones. At this point the
user must search for a flight and a hotel reservation by choosing separately a
concrete service from the cluster related to the Reserve Flight service and
a concrete service from the cluster associated to the Reserve Hotel one. In
this case, Σcand = {Reserve Air Travels}, Σ′

cand = {Reserve Air Travels,

Reserve Flight, Reserve Hotel}, Σ̄′
cand = {Hotel Kungsgton Stockholm,

Hotel Riga Viesnica, Hotel Orna, KLM Royal Dutch Airlines, Alitalia,
Lufthansa}.

Application of rules proposed above can be iterated until the set Σ′

cand will
stop changing. For example, we can extend the set of candidate services by
exploiting the is-composed-of relationship between Reserve Air Travels,
Reserve Flight and Reserve Hotel services and we can further extend the
set by exploiting the is-a relationship between Reserve Flight and Reserve

Low Cost Flight services.

22

Fig. 4. MAIS architecture for service classification and discovery.

5 The architecture

The models and methods introduced are used within the architectural frame-
work shown in Figure 5, which enables service discovery as described above.
In particular, one of the main goals of the work is to propose an architecture
that extends the UDDI Registry, maintaining a full compatibility with it. In
such a way the user can either exploit the classical UDDI APIs or invoke the
APIs provided by our architecture which provide the additional functionali-
ties discussed in the present paper. The UDDI functionalities are also used to
store the e-Service specifications according to the service model presented in
Section 2. In fact, as described in [21], the UDDI items could refer not only
to WSDL files, but also to generic specifications by means of the extension
mechanism of tModels. At this time we are working on a XML-specification
about the context and quality properties of an e-Service.

Starting from the data repository, the system relies on the ontologies, as
highlighted in Sections 3 and 4: a domain-specific ontology, in which the terms
used to semantically describe services are organized, and a service ontology,
that organizes the published services as described in Section 3.

The functionalities of the architecture are exported through both an API
and a Web application, which allows the user (human or application) to in-
teract with the Compatible Service Provider (hereafter CSP). Through such
functionalities the user can either (i) require a service publication or (ii) look
for a service not only using the typical UDDI facilities, but also the new
mechanisms described in this work. In the first case the CSP, according to the
similarity functions described in Section 3, is in charge of correctly placing the
e-Service inside the service ontology, whereas in the second case it is able to

23

identify a set of candidate services with respect to a given request.

The CSP can be invoked by a user, who wants to perform an interactive
search (for example, starting with a search by category modality) or by an
application to execute a process through the invocation of a set of e-Services
in a given order. In particular, in this last case an Orchestrator splits the
process execution into a sequence of service requests with quality constraints
which are sent to the Service Invocator, a module that, after collecting context
information, interacts with the CSP exploiting searching modalities presented
in Section 4 to obtain references to the desired concrete services. Finally, these
services can be invoked and used for the process execution.

6 Related work

Several approaches in literature address issues related to service descrip-
tion and modeling, service classification and matchmaking, on the basis of
functional, contextual and quality-based comparison and use of ontologies to
enhance service discovery. A large number of proposals attempt to maintain
compatibility with existing standards in the service oriented architecture, in
particular with SOAP, WSDL and UDDI.

The service directory holds an important role inside the Service Oriented
Architecture and different proposals are available in order to provide models
and mechanisms not only for the service publication, but also for a more
efficient service discovery. UDDI Registry [2] is the most important and known
implementation of a service directory. The main task of a UDDI Registry is
to organize services with respect to three different aspects: who provides the
service, which functionalities the service performs and how the service can
be invoked. In this way, the UDDI Registry, besides a classical keyword-based
search, can be browsed according to three different modalities, namely through
White Pages, Yellow Pages and Green Pages. Several implementations of the
UDDI Registry are now available 2 , but extensions have been proposed due to
the lack of a semantic-based classification and search of services.

In our approach, the extensions to UDDI use a service ontology, with ab-
stract and concrete services, and semantic context and quality information
about services.

About the service modeling proposals, WSDL is a de-facto standard for
service functionality description, whereas OWL-S [22] is meant to provide
a description of everything a service can do by combining a Service Profile
(“what the service does” enriched with non functional aspects such as quality
criteria), a Process Model (“how the service works”) and a Service Grounding
(related to implementation details).

In our approach, in addition to describe simple services, we focus on pro-
viding a general service ontology, which allows relating services to each other

2 See uddi.microsoft.com, uddi.ibm.com and uddi.sap.com.

24

during classification and retrieval.

Quality of service issues are also addressed by languages as WSLA [23] or
WSOL [24,25], which identifies the QoS parameters deemed useful for service
providers to characterize services; in some sense, [26] integrates this proposal
to extend service discovery based on QoS-related information other than on
interfaces. [27] proposes a mechanism enabling the evaluation of the overall
QoS of a composite service, i.e., a service obtained by composing several dis-
tinct services, once a description of the QoS parameters of the component
services is given.

In this paper, we associate quality levels as a first class item in the de-
scription of services. We also propose criteria to select services on the basis of
functional, contextual and quality aspects in the service request.

About profiles and context information, we can mention the WWRF (Wire-
less World Research Forum) [28], the Cameleon Project [29] and the CC/PP
(Composite Capabilities/Preferences Profile) initiative of the W3C Device In-
dependence Working Group [30]. The UWA Project studied and proposed
customization rules [12] to describe and constrain the adaptability of ubiqui-
tous Web applications. Fensel et al. [31] suggest the use of semantic annotation
of service descriptions to allow automatic service discovery, composition, in-
vocation and interoperation.

In particular, [32] proposes an extension of WSDL, that is called WSSP
(Web Service Semantic Profile), to encode semantic information in WSDL
by annotating I/O entities by means of domain ontologies written in RDF,
DAML+OIL or OWL and by expressing constraints on inputs and outputs
using an RDF-Rule Markup Language [33]. Semantic annotation is used both
when a new service is registered into the UDDI Registry and when a service
request is formulated. A semantic matchmaker is then used to perform match-
making among a service request and the registered service descriptions. The
matchmaker is inspired by LARKS [34] algorithm and the DAML-S match-
maker [35]. Firstly, the well-known information retrieval technique TD/IDF
(Term Frequency Inverse Document Frequency) is used as a preliminar filter
to locate candidate services in the UDDI Registry even when no semantic
information has been provided. Then two other kinds of filters are applied,
based on semantic description of services: (i) a type filter, that checks to see
if the definitions of input and output parameters match by applying a set
of subtype inferencing rules on the types of inputs and outputs (defined as
classes in the domain ontologies); (ii) a constraint filter, that computes the
logical implication among constraints by using polynomial subsumption algo-
rithm for Horn clauses. These two filters are meant to verify if the required
service can be replaced by a registered one (plug-in match) by evaluating I/O
and constraint subsumption. Wang et al. [36] use both the semantics of the
identifiers of WSDL descriptions and the structure of their operations, mes-
sages and data types to assess the similarity of WSDL files used to describe
services. A semantic information-retrieval method is also used to identify and
order the most similar service descriptions when only a textual description of

25

desired services is given.

In Section 4 we have discussed the algorithms for different types of search in
our approach. Our focus is on selecting e-Services considering all interesting
aspects in the request. In our work we propose to use a semantic approach
in the classification of the services in the ontology and to be able to evaluate
similarity between services.

Several efforts have been dedicated to the classification of services based on
the use of ontologies in order to enhance their discovery. The actual use of
the ontology during search is limited, mainly to allow scalability of the sys-
tems when a large number of services is considered. Puyal et al. [37] studied
the selection and execution of remote services on mobile devices and pro-
posed a system, remote, where a service ontology stores information about
the available services in a frame-based way simply using service categories
and keywords to classify services in a taxonomy (only is-a relationships are
taken into account). When a service request is formulated, a new concept
(service) is created and positioned in the taxonomy with the support of a
Description Logic reasoner. The child nodes of this new concept, once it is
positioned in the ontology, are the services presented to the user. Mostéfaoui
and Hirsbrunner [38] proposed an architecture for gathering and processing
contextual information exploited to enhance service selection after the appli-
cation of the discovery mechanism based on functional description of services.
In [27] a service ontology is proposed to obtain an agreement by a community
(for example, air transfer). Here, a service ontology specifies a domain, a set
of synonyms to allow a flexible search for the domain and a set of service
classes to define the properties of services, further specified by its attributes
and operations. A service class represents a set of services providing the same
capabilities (operations). The service ontology also specifies a service quality
model that is used to describe non functional aspects.

As explained in the previous sections, our approach tries to capture exist-
ing efforts about service functional comparison grouping concrete services into
clusters of similar ones and to generalize common functionalities provided by
clustered concrete services by means of abstract service capabilities, as also
suggested in [31], to shorten the way towards a variety of possible alterna-
tive concrete services that could be invoked and that are filtered in a second
moment on the basis of quality and contextual issues. Semantic relationships
among services are also derived and used for discovery purposes. This approach
allows scalability in the search process, while compatibility with current SOA
standards (in particular UDDI) ensures a certain level of interoperability.

7 Conclusions

Service discovery is one the most important emerging key aspects in Ser-
vice Oriented Computing. The necessity for both a human and an application
to find the more suitable e-Services with respect to a set of requirements is

26

discussed in this work. An e-Service model is introduced according to two dif-
ferent standpoints, in which both what the user wants (requester perspective)
and what the provider offers (the provider perspective) are defined. Starting
from this model, we suppose that all the available services are stored and
organized inside a service ontology. This organization allows us to identify
and maintain the possible relationships that could exist among services. Ex-
ploiting such an ontology, service discovery techniques are used to compare
the requirements of the user specified using the requester perspective model
against the functionalities provided by the services stored in the ontology and
described according to the provider perspective. Retrieval techniques consider
also the context of the request and the requested quality level to filter suitable
services obtained after the previous functional retrieval phase.

A subset of the techniques introduced have been implemented and are now
available in a tool called CSP (Compatible Service Provider), which uses
ARTEMIS tool environment as the underlying ontology engine [20]. Future ac-
tivities concentrate on the CSP completion and on the definition of an ad-hoc
quality model within the MAIS Project. Behavioral aspects in the e-Service
description will be considered by means of states and state transitions to fur-
ther enhance functional comparison, while the implementation of an efficient
and decidable reasoner that is able to manage constraints imposed on input
and output parameters by pre- and post-conditions is also under development.
Finally, experimentations of our approach in the touristic domain is currently
addressed.

Acknowledgements

Part of this work has been supported by the Italian MIUR/MURST FIRB
MAIS (Multichannel Adaptive Information Systems) Project.

References

[1] M. P. Papazoglou, D. Georgakopoulos, Service-Oriented Computing, special
issue, guest editors introduction, Commun. ACM 46 (10) (2003), pag. 24–28.

[2] UDDI Technical White Paper, www.uddi.org/pubs/lru_UDDI_Technical_

Paper.pdf (2001).

[3] T. Berners-Lee, J. Hendler, O. Lassila, The semantic Web, Scientific American
284 (5).

[4] R. Fillman, Semantic services, IEEE Internet Computing 7 (2003) 4–6.

[5] The MAIS Project Home Page, www.mais-project.it.

[6] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard,
S. Pogliani, K. Riemer, S. Struble, P. Takacsi-Nagy, I. Trickvic, S. Zimek, Web
Service Choreography Interface 1.0, www.w3.org/TR/wsci (August 2002).

27

[7] BPMI.org - Business Process Modeling Language, www.bpmi.org.

[8] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte,
S. Weerawarana, Business Process Execution Language for Web Services,
version 1.0, IBM, www.ibm.com/developerworks/library/ws-bpel/ (July
2002).

[9] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services
Description Language (WSDL) 1.1, World Wide Web Consortium (W3C),
www.w3.org/TR/2001/NOTE-wsdl-20010315 (March 2001).

[10] C. Marchetti, B. Pernici, P. Plebani, A quality model for multichannel adaptive
information, in: Proceedings of the 13th International World Wide Web
Conference, Alternate track on Web Services, ACM Press, 2004, pp. 48–54.

[11] B. Pernici, P. Plebani, C. Batini, C. Cappiello, P. Missier, QoS in Multichannel
IS: the MAIS Approach, in: Proceedings of the International Workshop on Web
Quality (WQ’04) in conjunction with the ICWE 2004, Munich, Germany, 2004.

[12] UWA Consortium, UWA Web Site, www.uwaproject.org.

[13] Distributed Management Task Force Standards, www.dmtf.org/standards.

[14] A. van Moorsel, Metrics for the Internet Age: Quality of Experience and
Quality of Business, Tech. rep., HP Labs, also in the Proceedings of the 5th
Performability Workshop, September 16, 2001, Erlagen, Germany. (July 2001).

[15] D. Bianchini, V. De Antonellis, M. Melchiori, An ontology-based method for
classifying and searching e-Services, in: Proc. Forum of First Int. Conf. on
Service Oriented Computing (ICSOC 2003), Trento, Italy, 2003.

[16] V. De Antonellis, M. Melchiori, and P. Plebani, An Approach to Web
Service compatibility in cooperative processes, in: Proc. IEEE SAINT2003 of
Int. Workshop on Services Oriented Computing: Models, Architectures and
Application (SOC2003), Orlando, Florida, USA, 2003.

[17] S. Castano and V. De Antonellis, A Framework for expressing Semantic
Relationships between Multiple Information Systems for Cooperation,
Information Systems, 23 (3-4) (1998) 253–277.

[18] B. Everitt, Cluster Analysis, Heinemann Educational Books Ltd, Social Science
Research Council, 1974.

[19] ECCMA, UNiversal Standard Products and Services Classification (UNSPSC),
www.eccma.org/.

[20] The ARTEMIS Project Home Page,
www.ing.unibs.it/~deantone/interdata_tema3/Artemis/artemis.html.

[21] D. Ehnebuske, D. Rogers, C. von Riegen, UDDI Version 2.0 Data
Structure Reference (June 2001), www.uddi.org/pubs/DataStructure-V2.

03-Published-20020719.pdf.

28

[22] A. Ankolenkar, M. Burstein, G. Denker, J. R. Hobbs, O. Lassila, D. L. Martin,
D. McDermott, D. McGuinness, S. A. McIllraith, M. Paolucci, T. R. Payne,
B. Parsia, M. Sabou, E. Sirin, N. Srinivasan, K. Sycara, M. Solanki, OWL-
S: Semantic Markup for Web Services, OWL-S 1.0 Draft Release, (November
2003).

[23] A. Keller, H. Ludwig, The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services, Technical Report RC22456(W0205-
171), IBM Research Division, T.J. Watson Research Center (May 2002).

[24] V. Tosic, K. Patel, B. Pagurek, WSOL - Web Service Offerings Language, in:
Web Services, E-Business and the Semantic Web, CAiSE 2002 International
Workshop on Web Services, E-business, and the Semantic Web (WES 2002),
Toronto, Canada, 2002.

[25] A. Mani, A. Magarajan, Understanding Quality of Service of your Web services,
IBM Developer Works www.ibm.com/developerworks/library/ws-quality.

html (January 2002).

[26] S. Ran, A Model for Web Services Discovery with QoS, in: ACM SIGecom
Exchange, Vol. 1, ACM Press, New York, NY, USA, 2003, pp. 1–10.

[27] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, H. Chang, QoS-Aware
Middleware for Web Services Composition, IEEE Transactions on Software
Engineering 30 (5) (2004) 311–327.

[28] Book of visions 2001, www.wireless-world-research.org (2001).

[29] Cameleon Consortium, Cameleon Web Site, giove.cnuce.cnr.it/cameleon.
html.

[30] W3C Consortium, Composite Capabilities/Preferences Profile, www.w3.org/

Mobile/CCPP/.

[31] R. Lara, H. Lausen, S. Arroyo, J. de Bruijn, D. Fensel, Semantic Web Services:
description requirements and current technologies, in: International Workshop
on Electronic Commerce, Agents and Semantic Web Services, in conjunction
with the Fifth International Conference on Electronic Commerce (ICEC 2003),
Pittsburgh, PA, 2003.

[32] T. Kawamura, J.-A. D. Blasio, T. Hasegawa, M. Paolucci, K. Sycara,
Preliminary Report of Public Experiment of Semantic Service Matchmaker
with UDDI Business Registry, in: Proc. of First Int. Conf. on Service Oriented
Computing (ICSOC 2003), Vol. LNCS 2910, Springer, Trento, Italy, 2003, pp.
208–224.

[33] The Rule Markup Initiative, www.dfki.uni-kl.de/ruleml/.

[34] K. Sycara, S. Widoff, M. Klusch, J. Lu, LARKS: Dynamic Matchmaking Among
Heterogeneous Software Agents in Cyberspace, Autonomous Agents and Multi-
Agent Systems 5 (2002) 173–203.

[35] M. Paolucci, T. Kawamura, T. Payne, K. Sycara, Semantic Matching of Web
Services Capabilities, in: Proc. of the First Int. Semantic Web Conference
(ISWC2002), IEEE, 2002, pp. 333–347.

29

[36] Y. Wang, E. Stroulia, Semantic Structure Matching for Assessing Web-Service
Similarity, in: Proc. of First International Conference on Service-Oriented
Computing (ICSOC2003), Vol. LNCS 2910, Springer, Trento, Italy, 2003, pp.
194–207.

[37] J. M. Puyal, E. Mena, A. Illarramendi, REMOTE: a Multiagent System to
Select and Execute Remote Software Services in a Wireless Environment,
in: Proc. of WWW 2003 Workshop on E-Services and the Semantic Web
(ESSW2003), Budapest, Hungary, 2003.

[38] S. K. Mostéfaoui, B. Hirsbrunner, Enhancing Service Composition with Context
Information, in: Proc. Of Fifth International Conference on Information and
Web-based Applications & Services, Jakarta, Indonesia, 2003.

30

