
Retrieving Sensors data in Smart Buildings
through Services: a similarity algorithm

Claudia Foglieni, Mirjana Mazuran, Giovanni Meroni, and Pierluigi Plebani

Politecnico di Milano – Dipartimento di Elettronica, Informazione e Bioingegneria
Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

foglieni.claudia@gmail.com, mirjana.mazuran@polimi.it,

giovanni2.meroni@mail.polimi.it, pierluigi.plebani@polimi.it

Abstract. This paper proposes a semantic-based retrieval algorithm
that allows the pervasive service system to find services able to return
data about specific physical phenomenon (e.g. temperature, humidity), in
a given location, with particular timeliness. This retrieval algorithm can
be used to increase the capabilities of a self-managing pervasive systems,
with specific focus on smart buildings, by providing a flexible solution
to find sensors similar to a one that failed, or to find sensor data able to
control actuators.

1 Introduction

The diffusion of wireless and wired sensor networks led to the development of
pervasive systems. An example are smart buildings, where sensors are deployed
in residential, commercial and industrial buildings to monitor and control the
installed devices. Service oriented architectures have been adopted to implement
these pervasive systems and to hide the technical heterogeneity and the com-
plexity of the deployed devices [1]. In this way, sensors are seen as services and
the communication with them can be performed as a service invocation. Espe-
cially when heterogeneous sensor networks are considered, this pervasive service
system can overcame the limitations caused by the vendor lock-in problem.

Goal of this paper is to propose an algorithm for retrieving sensors, seen as
services, able to return data about a specific phenomenon, in a given location,
with particular timeliness. This algorithm is based on (i) a semantic-based service
description model that extends OWL-S 1 with SensorML 2 and information
about the sensor location, and (ii) a similarity function that compares the output
of the services with the characteristics of the needed data. Generally speaking,
with this retrieval algorithm we aim to increase the capabilities of a building-
related pervasive service system with the possibility to find sensors similar to
another one by comparing the services that represent such sensors. Indeed, in
case a sensor recording the temperature fails or is not present, with the proposed
algorithm it is possible to find the closer temperature sensor and to use the data
recorded by it, thus overcoming the lack of the desired information.

The rest of the paper is organized as follows. Section 2 introduces an overview
of the approach. Section 3 focuses on the retrieval algorithms that represents

1 http://www.w3.org/Submission/OWL-S/
2 http://www.opengeospatial.org/standards/sensorml



the core of this paper. The validation of the algorithm is discussed in Section 4.
Finally, after a discussion of related work in Section 5, Section 6 concludes the
work and outlines some possible future work.

2 The overall approach

In this work we assume that a pervasive system is composed of many het-
erogeneous sensors and actuators that are spatially distributed. These devices
belong to different technologies, have different semantics, and are characterized
by different complexity levels. Therefore, in order to manage the gathering and
processing of data we need a middleware that will hide the complexity of this
scenario while allowing users to exploit all its potential. To reach this goal we use
PerLa [2] to manage the data through a database abstraction, that is, the data
gathered by sensors are seen as if arranged into a database and the final user is
provided with a user-friendly language, featuring an SQL-like syntax, to handle
it. On top of this middleware, a “Sensors as a Service” layer exposes only the
data that are defined as externally accessible, thus the user or application that
invokes the services relies only on the methods specified in the service interfaces
without knowing the data model or the storage technology.

In this scenario, a proper service description is crucial, as it is the only way
to know what a service offers and how to interact with it and, in this work, such
a service description is based on a semantic characterization. In particular, we
describe each available service in terms of the information that can be useful to
the users to express the requirements that have to be satisfied during the retrieval
process. We consider fundamental the following three dimensions: (i) sensor,
services are related to sensors or actuators and have different characteristics (e.g.,
type, measure unit, etc.); (ii) location, sensors providing services are bound to a
physical location. By knowing this location we can answer queries in a context-
aware fashion; (iii) device, it is our aim to monitor consumption flows, thus,
we need to have some information about the devices (considering the sensors
themselves) that consume or produce energy.
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To support these requirements, we adopt a service ontology. We start from
the well-known OWL-S ontology and extend it with information related to
our needs and application domain. Therefore, as shown in Figure 1, we enrich
OWL-S with three more ontologies, each one describing one of the three dimen-
sions introduced above. In particular, notice that each service is described in
terms of:

– its temporal output (i.e. timeOutput relation): data returned by a service
may be: i) the current data reading (Last One), ii) all the readings in a
specific interval of time (Interval) or iii) the last X readings (Last X, where
X depends on the service);

– the features of the node in the sensor network to which the service is asso-
ciated (described by the Sensor ontology)

– the physical location of the sensor providing the service (described by the
Location ontology as shown in Figure 2): a hierarchy (Location→ Room→
Floor → Building) is used to support different granularities and different
relations (nearRoom, upFloor and nearBuilding) are used to understand if
the concepts of same granularity are somehow near one to the other;

– the features of the devices that influence or are influenced by the node to
which the service is associated (described by the Device ontology): we specify
the energy they consume or produce.

This semantic representation allows us to describe the structure of services
and to reason on the data we have, in order to infer some new knowledge that
might be useful during the query answering process. To better understand, let
consider the following example: suppose that a user wants to know the temper-
ature in Room 23 but that one does not have a sensor installed, yet Room 24,
the one next to Room 23, has one. By having this information expressed in the
location ontology, our retrieval algorithm will be able to suggest to the user the
service returning the temperature in Room 23, even though a penalty will be
applied to this one since it does exactly satisfy the user request.

3 Retrieval algorithm

There are many approaches supporting the service retrieval process (as discussed
in Section 5). For our purposes, we assume that the users’ needs are expressed in
terms of a desired service, i.e., using the same description model used to describe
a service the user can define the features of a service that the user is looking for.
Then the description of the desired service is compared with all the available
services. Formally, we introduce the following definitions:

– Σ = {σi} is the set of available services, where each σi is described in terms
of the service ontology discussed before. Moreover, σi.values is the set of
values that have been sensed by the sensor associated to the service σi.

– σ = 〈type, location, time, output〉 is the desired service, defined in terms of
one or more concepts and properties of the service ontology. More precisely:



• type is associated to the nature of the sensor, i.e., what the sensor mea-
sures (e.g., temperature, power, and so on).

• location defines where the data have been sensed using one of the Spa-
tialThing related concept in the location ontology.

• time = {LastOne, LastX, Interval} specifies the nature of the sensed
data returned as output of the service. In case of time = LastOne,
this means that the user is interested in the more recent sensed value,
whereas time = LastX in a set of more recent values. Finally, in case of
time = Interval the user specifies the time range in which the sensed
values are considered relevant.

• Depending on the value of time, output specifies the value of X ∈ N, or
the initial and final hours and dates, and the granularity.

– Σ ⊆ Σ is the set of services relevant with respect to the desired service.

With respect to the traditional approaches our algorithm considers the lo-
cation as a first class citizen and the similarity algorithm strongly depends on
it. Moreover, having the time and output, allows the user to insert in query
elements that makes more expressive the request in the reference scenario.

In our approach, we provide a similarity function sim(σ, σi) → [0, 1] that
compares two service descriptions and the higher the returned value the more
similar the two services.

Listing 1 Similarity algorithm overview

Σ = ∅
for all σi ∈ Σ do

if σi.type = σ.type then
sim = 1.0
if σ.location 6= ∅ then

sim = sim * (1-location penalty(σi.location, σ.location))
end if
if σ.time 6= ∅ then

sim = sim * (1-time penalty(σi.time, σ.time))
sim = sim * (1-output penalty(σi.time, σi.output, σ.time, σ.output))

end if
if sim > th then
Σ = Σ ∪ σi

end if
end if

end for
return Σ

The resulting algorithm is presented, in its main steps, in Listing 1. Here
the functions location penalty, time penalty, and ouput penalty are in charge
of computing the distance between the request and the offer with respect to a
specific aspect. The similarity is computed as the product of all the penalties. In
this way, a good value of similarity can be obtained only if all the requirements



are matched at least partially. Indeed, it is enough that at least one of the
requirements is not properly supported to significantly reduce the similarity.
Finally, as also reported in the algorithm, as the elements composing σ are not
mandatory, the corresponding penalty function could not be invoked.

3.1 Location penalty

The computation of the location penalty identifies the distance between the
concepts σ.location and σi.location in the location ontology and it is based on
the following assumptions:

– If σ.location = σi.location no penalty is applied.
– The more distant σ.location to σi.location, the grater the penalty.
– The wider the location σ.location with respect to the location σi.location,

the greater the penalty. For instance, if the user asks for a temperature in
a room and the service monitors the entire floor, then the penalty will be
lower than that of a service returning the temperature of the entire building.

– If the location σ.location is more narrow than the location σi.location no
penalty is applied.

Listing 2 Location algorithm

award=1
for all edge: edges in shortest path between σi.location and σ.location do

if edge.from is more specific σ then
award = award * λ

end if
end for
location penalty = 1 - award

Based on these assumptions, Listing 2 shows the complete algorithm for
computing the location penalty. First, the shortest path between the concepts
σ.location and σi.location is computed. As the penalty depends on the edges
from less specific concepts to less specific concepts, we firstly count the opposite
to compute the award. Then, the penalty is given by the opposite. The parameter
λ quantifies the amount of award (penalty) to be given for each relevant hop and
its value is defined after a tuning phase, that is presented in the next section.

3.2 Time penalty

Time penalty depends on the degree of compatibility between services having
different time output property values. For example, if σ.time = LastX a service
σi is fully compatible if σi.time = LastX but, we also consider a compatibility
(with a penalty) also in case σi.time = Interval. Indeed, the time range can
cover the required more recent values. On the contrary, if σi.time = LastOne
cannot be considered compatible as it returns only the most recent value over
the required X values. Accordingly, we defined three levels of compatibility, i.e.,



Mismatch (penalty = 1.0), Close (penalty = τ), Exact (penalty = 0.0) and
Table 1 reports how these penalties are associated to each possible combination
of σi.time and σ.time, where the value of τ is set during the tuning phase.

σi.time
Last One Last X Interval

σ
.t
im
e Last One Exact Close Close

Last X Mismatch Exact Close
Interval Mismatch Close Exact

Table 1. Time compatibility matrix

3.3 Output penalty

The last computed penalty is related to timeliness, that is defined as the extent
to which data are timely for their use or as the property of information to arrive
early or at the right time [3].

In our case, timeliness depends on the distance between when the sensed
data is available with respect to when it is required, so the penalty depends
on how much the timeliness is not satisfied. As the user with σ.time when the
required data is relevant in three different ways (i.e., LastOne, LastX , and Inter-
val) three different approaches for computing penalties are proposed. Differently
from the previous penalties, the computation of the output penalty requires the
interaction with the services. Indeed, the information available in the service
description is not enough as we need to have information on the data returned
by the services which can be obtained only bu invoking them. As a consequence,
in this phase the services need to be invoked and the returned data analyzed.
We remind that σi.values represents these values and each of them is a pair of
a timestamp (when the values is sensed) and the sensed value.

Listing 3 Last One algorithm

for all σk ∈ Σ do
max(σk.values.timestamp) = date of the more recent sampled data
if max(σk.values.timestamp) < less recent then

less recent = max(σk.values.timestamp)
end if
if max(σk.values.timestamp) > more recent then

more recent = max(σk.values.timestamp)
end if

end for
pen current = 1 − (max(σi.values.timestamp) − less recent)/(current date −
less recent))
pen morerec = 1 − (max(σi.values.timestamp) − less recent)/(more recent −
less recent))
output penalty = wcurr * pen current + wmorerec * pen morerec



LastOne If σ.time = LastOne then the user is interested in services that return
the most recent values. Here the discussion is on the meaning of “recent value”:
is it with respect to when the user submits the query, or is it the most recent
among the data returned by the services? As both the solutions are valid, we
consider both the situation and, using a weighted sum, we leave to the user
the possibility to specify which is the best interpretation. This results in the
algorithm reported in Listing 3. First of all, we assume that the current date
is given (for instance, by invoking a system call); then, the more recent and
less recent dates are obtained by calling the services available and considering
the lower and higher values for the returned timestamps. Then, the penalty in
both the cases is calculated as a proportion of the distance between the date of
the returned value and the reference date.

Last X In case of σ.time = LastX the user also specifies in the query the
desired number (e.g., σ.output.X) of output values. On this basis, two main
aspects will be considered in the computation of the penalty:

– The number of returned values (pen number): a σi able to retrieve at least
σ.output.X values has lower penalty than a σi that satisfies the user re-
quest only partially returning a number of values lower than σ.output.X:
i.e., pen number = count(σk.values) / σ.output.

– The timeliness of the returned values (pen recent): a σi returning values
that are more recent has lower penalty than a σi that returns values with
lower timestamps: i.e., pen recent = lastOne(σi)

Having these values: output penalty = 0.5 · pen number + 0.5 · pen recent
Interval The third possible kind of query on the output is σ.time = Interval,
i.e, the user wants services that have sampled data in a specified time range
(σ.output.start date, σ.output.end date). Here, the more covered is the interval,
the more similar the service. To properly consider also a homogeneous coverage
of the interval, a third input parameter named σ.output.granularity is required
that specifies the sampling time inside the time range. For instance, having a
time range of 10mins with a granularity of 60secs, means that the ideal service
should have at least 10 sampled data distributed every 1min. Listing 4 reports
the details of the adopted algorithm. First of all, given the time range, the
number of subintervals is computed. Then, for each of them, we verify how
many intervals are covered by the σi.values. Finally, the higher the number of
not covered intervals, the higher the penalty.

4 Validation

To validate the proposed algorithm, we based our tests on a testbed containing
data collected from 54 sensors deployed in the Intel Berkeley Research lab 3.
The sensors collected timestamped values of humidity, temperature, light and
voltage, producing 2.3 million readings in a period of a month and a half.

3 http://db.csail.mit.edu/labdata/labdata.html



Listing 4 Interval algorithm

interval = σ.output.end date− σ.output.start date
subintervals= interval /σ.output.granularity
covered subintervals = 0
for all subintervals in interval do

if count(σi.values ∈ subinterval) > 0 then
covered subinterval ++

end if
end for
output penalty = 1- (covered subinterval / subintervals)

Query σ.location σ.time σ.output

σtuning
1 - Interval Range: from 28/2/2004 6:30 AM

to 28/2/2004 2:30 PM
Granularity: 1 hour

σtuning
2 Floor22 LastX Samples: 14

σtuning
3 Room27 LastOne -

σtest
1 - Interval Range: from 28/2/2004 10:30 AM

to 28/2/2004 6:30 PM
Granularity: 1 hour

σtest
2 Floor12 LastX Samples: 11

σtest
3 Room111 LastOne -

Table 2. Tuning and test queries.

Before running the test cases to validate the approach, a proper tuning of the
parameters th, λ, and τ is required. To this aim, the first three queries reported
in Table 2 have submitted to the testbed varying, for each run, the values of
these three parameters. For each of these queries, the list of relevant services is
manually created to be used for computing the precision and recall.

Based on the obtained results, the better precision and recall values for these
queries is given for the following values: th = 0.5; λ = 0.9; τ = 0.8. The
corresponding precision recall chart for this tuning set is shown in Figure 3. With
this configuration, a second set of queries (some of them are reported in the lower
part of Table 2) has been used to calculate the final precision and recall graph. As
shown in Figure 4, the proposed algorithm properly responds to the queries with
a good precision for all the percentage of recall. Indeed, when all the relevant
services are returned (i.e., recall equals to 100%) the precision remains greater
than 60%. To the best of our knowledge, there are no comparable approaches,
thus, a comparison with existing methods is not possible at this stage.

5 Related work

Different similarity algorithms have been proposed that allow to compare sen-
sors. In [4] a methodology to discover service similarity is based on testing and
requires the evaluation of the outputs produced by the services after invoking
them. With respect to this work, we are interested in introducing a semantic
dimension into the matchmaking process. Research has put much effort in de-



Fig. 3. Performances with the tuning
set queries.

Fig. 4. Performances with the test
set queries.

veloping ontology-based models to support pervasive systems [5] which mostly
adopt ad hoc solutions that depend on the application domain but also bring
up the need for ontologies to describe sensors [6] and locations [5] in particular.
Among sensor ontologies it is worth pointing out the Semantic Sensor Web, a
framework to support semantic annotation of sensor data through the use of
ontologies to elicit the features of the sensors. In this work we make use of such
an ontology to extend the OWL-S ontology with useful domain-dependent infor-
mation similarly to what has been done in the context of the SemsorGrid4Env
EU project 4.

Other works [7, 8] enrich services description by associating their inputs and
outputs with the concepts in a domain ontology and adopt a hybrid strategy
that exploits both logic-based reasoning and content-based information retrieval
techniques. Authors in [9] adopt an ontology to describe the interactions be-
tween the processes in a service and then compute the similarity by keeping into
account: i) the structural similarity, based on the outputs of the services and ii)
the semantic similarity, based on the data in the ontology.

As for structural similarity, in [10] and [11] two approaches are described that
dynamically select and recommend services to users. However, both approaches
are based on historical data and thus they assume that the similarity computed
in the past can be used to refine the future rankings.

On the other hand, different approaches have been proposed that exploit an
ontology to determine semantic similarity between services. The most common
approaches are distance metrics, information-based measures and more complex
ontology frameworks. In [12] authors propose a information-based similarity mea-
sure that also takes into account reasoning, that is, the semantic similarity of
an object depends on how many new objects it can generate. In [13] the authors
take a similar road but propose a weighted algorithm that takes into account
the frequency of words appearing the in semantic description of services. In this
work we focus on a simpler semantic similarity, that is based on the evaluation
of the distance between the features of a service and the features requested by a
user, in terms of the amount of edges that separates the two semantic concepts
in the ontology.
4 http://www.semsorgrid4env.eu



6 Conclusion

In this paper we have presented a semantic-based approach for retrieving ser-
vices that refer to sensors installed in buildings. The approach has been validated
and the results highlights the good performances of the algorithm in terms of
precision and recall. Future work will focus on reducing the number of service in-
vocations and optimizing the number of comparisons in the retrieval algorithm,
in order to improve the response time performance and the scalability of the
solution.
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