
Chapter 1
Semantic annotations and Web service retrieval:
the URBE approach

Pierluigi Plebani and Barbara Pernici

Abstract The goal of this chapter is to discuss how annotating the Web service in-
terfaces can improve the precision of a Web service matchmaking algorithm. To this
aim, we adopt URBE (UDDI Registry By Example) as a matchmaking algorithm for
calculating the similarities between two Web service interfaces described using the
SAWSDL or WSDL. The approach adopted in URBE takes into account both the
structural and semantic analysis of the interfaces: the former takes into account the
number of operations, inputs, and outputs as well as the data types involved; the lat-
ter considers the concepts related to the names given to the service, the operations,
and the parameters. In case the Web services are described with WSDL, WordNet
is used to find the relationships between names. In case of SAWSDL-based descrip-
tions, the analysis is based on the ontologies referred by the annotations.

1.1 Introduction

In the area of Autonomic Computing [8] methods and tools are required for mak-
ing the execution of business processes as reliable as possible. When considering
service-based processes, the reliability of a process strongly depends on the relia-
bility of the composing services. As a consequence, in case of a service failure, it
is fundamental to figure out how to find an alternative solution, i.e., a similar ser-
vice. According to this scenario, inside the PAWS (Processes with Adaptive Web
Services) framework [2], we have developed URBE (Uddi Registry By Example) a
UDDI compliant service registry that also performs content-based retrieval. Gen-
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erally speaking, URBE is a tool for supporting process design. For specifying a
process definition or for substitution purposes, given a service interface description,
with URBE a designer, following a query by example approach, can find the ser-
vices published in a repository that expose the interfaces as similar as possible to
the requested one.

The goal of this chapter is to give an overview of the matchmaker which URBE
is based on. A detailed discussion of this matchmaker is given in [13]. In particular,
since URBE can analyze both WSDL and SAWSDL Web service interface descrip-
tions, in this chapter we focus on how the annotations defined in a SAWSDL file
can be useful to improve the accuracy of the matchmaking algorithm in terms of
precision and recall.

The chapter is structured as follows. Section 1.2 introduces the ideas underlying
the URBE approach. Section 1.3 enters into the details of the algorithm that cal-
culates the similarity between two Web service description interfaces. Section 1.4
analyzes the matchmaking results, especially considering the influences on the an-
notations included in SAWSDL documents. A summary of the content of this chap-
ter is given in Section 1.5.

1.2 Approach: Web service substitution

As discussed in the introduction, Web service substitution might be required when
the execution of a service-based business process fails due to a failure of one of
the composing services. Regardless of when the selection of the substituting Web
service occurs (i.e., at design or run-time), one of the main goals is to minimize
the engineering effort for the Web service substitution required on the client-side to
re-implement the Web service functionalities invocations. URBE aims at supporting
this situation by providing a similarity function:

f Sim(wsa,wsb)→ [0..1] (1.1)

where wsa and wsb are two Web service interfaces described with WSDL (or
SAWSDL). The higher the result of f Sim, the higher the similarity between the
two interfaces is. Since our goal is the Web service substitution, a higher value of
f Sim also means less burden with the Web service substitution. So, we assume that:

Definition 1. Given two Web service interfaces wsa and wsb, then f Sim(wsa,wsb) =
1 if the two Web services expose the same interface, whereas f Sim(wsa,wsb) = 0 in
case the interfaces are completely different.

Figure 1.1 shows the interfaces of two similar Web services. In this case, even
if they fulfill the same goal, i.e., currency exchange, the number of available oper-
ations, as well as the way in which the input and output parameters are named, is
different. Since one of our goals is to evaluate the similarity for substitutability, we
need to consider that substituting CurrencyWSwith CurrencyExchangeSer-
vice is different to the opposite activity. Thus:
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Fig. 1.1 Example of similar Web services.

Definition 2. The function f Sim is not reflective. So, f Sim(wsa,wsb) could differ
from f Sim(wsb,wsa) as the similarity depends on which Web service holds the role
of subtituting and which the role of substituted.

Indeed, if we usually invoke the CurrencyWS, in case of a failure we can start
invoking the corresponding operation of the CurrencyExchangeService after
implementing a mediator able to transform the messages: skipping the value of the
license number, i.e. LicNumber, obtaining the country name from the related cur-
rency symbol, and modifying the name of the invoked operation and the parameters.
On the contrary, if we are using CurrencyExchangeService and we have to
switch to CurrencyWS, the new Web service needs an additional parameter that
could be obtained by payment of registration fees, i.e., LicNumber.

Generally speaking, URBE relies on the assumption that two Web services could
be defined as functionally equivalent, and thus f Sim returns 1, if their interfaces ex-
pose the same operations with the same inputs and outputs. Thus, the two interfaces
must use the same names to define the operations and the parameters and, with re-
spect to the latter, the same data types are used. In case URBE realizes that these
constraints are only partially satisfied, then the value returned by f Sim decreases
accordingly. This results in a pair-wise comparison of the elements composing the
service description. This approach has been inspired by the literature on reusable
software components [20] and by work done in the Web service community [7].
With respect to the existing approaches, our algorithm combines both semantic and
syntactic aspects of the Web service that can be derived from a WSDL descrip-
tion. The semantic aspects derives from the analysis of the relation between the
names used for the whole service, the operations and the parameters and the con-
cepts stored in WordNet. In particular,, we are not interested on the meaning of
the names, but on their distance. In case, the service description includes explicit
references to domain ontologies, the distance of these annotations are considered.
Instead, the syntactic aspects can state the compliance between the input and output
structures and the adopted data types. The algorithm assumes that, as usually occurs,
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Fig. 1.2 Structure of the service similarity function f Sim [13]

the WSDL specification of the Web service interface is (semi-)automatically gener-
ated by a tool starting from a software module, such as a Java class. URBE exploits
this engineering practice during the semantic analysis since it implies that the re-
sulting description will probably reflect the naming conventions usually adopted by
developers [17]. In addition, when they exist, annotation of Web service description
elements may improve the accuracy of the semantic analysis. Indeed, annotating
the Web service elements with concepts in an ontology can help to better manage
possible ambiguities in the meaning of terms in the Web service descriptions.

1.3 Solution: URBE matchmaker

The URBE matchmaker implements the algorithm that computes the similarity func-
tion f Sim. Generally speaking, the hierarchical structure of a WSDL/SAWSDL de-
scription affects the structure of f Sim. For this reason, f Sim is defined in terms
of opSim, which in turn, is defined in terms of inParSim and outParSim (see Fig-
ure 1.2). This approach results in the algorithm shown in Listing 1.1.

Regardless of the function considered, it is worth noting that at each level the
algorithm is based on a function maxSim that implements the maximum weighted
assignment in a bipartite graph problem [3]. Given a graph G= (V,E), a matching is
defined as M ⊆ E so that no two edges in M share a common end vertex. If the edges
of the graph have an associated weight, then a maximum weighted assignment is a
matching such that the sum of the weights of the edges is maximum. Let us suppose
that the set of vertices is partitioned in two sets Q and P, each edge of the graph
connects a vertex from Q with a vertex from P, and that the edges of the graph
have an associated weight given by a function f : (Q,P)→ [0..1]. The function
maxSim : ( f ,Q,P)→ [0..1] returns the maximum weighted assignment.

Applying the assignment in bipartite graphs problem to our context, the set Q
represents a query, whereas P is what we compare with the query to evaluate the
similarity. Let us assume, for instance, that Q and P are composed of the operations
in wsa and wsb. |Q|< |P|means that the number of operations in Q is lower than the
number of operations available in P; so, for each operation in Q we may find a cor-
responding operation in P. On the contrary, |Q| > |P| means that we are asking for
more operations than are actually available. Since our approach aims to state if wsa
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function parSim(par_a, par_b) : double

parSim = wParNameSim * nameSim(par_a.name, par_b.name);
parSim = parSim + (1-wParNameSim) *

dataTypeSim(par_a.type, par_b.type);

end function

function opSim(op_a, op_b) : double

opSim = wOpNameSim * nameSim(op_a.name, op_b.name);
opSim = opSim + (1-wOpNameSim) *

(0.5 * maxSim(parSim, op_a.inputs, op_b.inputs) +
0.5 * maxSim(parSim, op_b.outputs, op_a.outputs));

end function

function fSim(ws_a, ws_b) : double

fSim = nameSim(ws_a.portType_name, ws_b.portType_name);
fSim = fSim + maxSim(opSim, ws_a.operations, ws_b.operations)

end function

Listing 1.1 URBE Algorithm

can be replaced with wsb, then the situation in which |Q| ≤ |P| is, in general, better
than the case |Q| > |P|. For this reason, we divide the result of the maximization
by the cardinality of |Q|. So, if |Q| ≤ |P| then maxSim : ( f ,Q,P)→ [0..1], whereas
if |Q| > |P| then maxSim : ( f ,Q,P)→ [0.. |P||Q| ]. In this way, the function maxSim is
asymmetric, i.e., maxSim( f ,Q,P) 6= maxSim( f ,P,Q), and this justifies the property
of f Sim introduced the Definition 2.

The URBE matchmaker also includes a set of weights to assign the relevance of
the similarity at the different levels during the computation of the overall similarity
value. More specifically, the weight wPT NameSim ∈ [0..1] defines how much the
similarity of the names of the portTypes has more importance than the similar-
ity between the operations that these portTypes contain in computing the overall
similarity. In the same way, at operation level, the weight wOpNameSim weights
the importance between the similarity of the operation names and the similarity of
the related parameters in computing the operation similarity. Finally, wParNameSim
weights the importance between the similarity of the parameter names and the sim-
ilarity of the data types.

To conclude the URBE matchmaker analysis, the last two elements to be analyzed
are the functions dataTypeSim(dta,dtb) → [0..1] and nameSim(na,nb) → [0..1].
These functions return, respectively, the similarity among two data types, and the
similarity among two names.
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Focusing on the data type analyses, a data type in an SAWSDL/WSDL can
be built-in or complex [5]. In the former case, simple data types (e.g., xsd:string,
xsd:decimal, xsd:dateTime) as well as derived data types (e.g., xsd:integer, xsd:short,
xsd:byte) are included. When comparing two built-in data types, following the ap-
proach defined in [16], their similarity is inversely proportional to the information
loss that will occur if we apply a casting from dta to dtb. For instance, if we move
from an integer to a real, we do not have any information loss since all the integers
can be represented with a real variable, i.e., dataTypeSim(integer,real) = 1. On the
other way round, when casting a real to an integer, we lost the decimal part so we
assume that dataTypeSim(integer,real) = 0.5. In the case of complex data types,
data type is expressed according to an XSD schema which is included, or imported,
in the WSDL specification as a complexType: a data type which includes other data
types (either built-in or complex). To reduce the complexity of the overall algorithm,
the URBE matchmaker only considers the name of the data types. The analysis of
the data type structure is now under investigation by considering work on service
compatibility based on subtyping theory [1]. As a consequence, in case of compari-
son of complex data types, dataTypeSim(dta,dtb)= nameSim(dta.name,dtb.name).
Due to its importance, in the next section we discuss in detail the nameSim function
and the effects of its parametrization for the evaluation of the Web service interfaces
similarity.

1.4 Lessons Learned

1.4.1 Evaluation Results

Generally speaking, in URBE the similarity among two names relies on a do-
main specific knowledge base and a general purpose ontology. The domain specific
knowledge base includes terms related to a given application domain. We assume
that this ontology can be built by a domain expert also analyzing the terms included
in the Web services published in the registry. The general purpose knowledge base
includes all the possible terms.

The effect of considering these two different ontologies is emphasized when us-
ing the SAWSDL Test Collection1 as the benchmark for evaluating the accuracy
of the matchmaker. The Web services in this collection include annotations only
for some of the elements composing the interfaces. Indeed, in such a benchmark
the operation names are usually not annotated, whereas the data types of the input
and output parameters are annotated. Moreover, the annotations refer to concepts
stored in a set of ontologies that, in some cases, are related each other. This sce-
nario affects the way in which f Sim is computed: the function nameSim compares
the names used to define the elements of the Web service description if the annota-

1 The test collection is available at http://projects.semwebcentral.org/
projects/sawsdl-tc/



1 Semantic annotations and Web service retrieval: the URBE approach 7

tion is not available, and WordNet2 is adopted as general purpose knowledge base.
Otherwise, nameSim will invoke the function annSim(aq,ap)→ [0..1] to compare
the annotations of these elements, if they exist. In this case, the ontologies specified
in the annotations hold the role of domain specific knowledge bases. For instance,
giving the example in Listing 1.2, at operation level, URBE has to consider the name
get PRICE since no annotation is available. On the contrary, at the parameter level,
the parSim function can exploit the annotations for the data types PriceType and
BookType: namely, concept.owl#Price and books.owl#Book.

<wsdl:definitions ...>
<wsdl:types>

<xsd:element name="Book" type="BookType" .../>
<xsd:element name="Price" type="PriceType" .../>
<xsd:complexType name="PriceType"

sawsdl:modelReference="concept.owl#Price">
...

</xsd:complexType>
<xsd:complexType name="BookType"

sawsdl:modelReference="books.owl#Book">
...

</xsd:complexType>
<xsd:simpleType name="Currency"

sawsdl:modelReference="currency.owl#Currency"/>
<xsd:simpleType name="Author"

sawsdl:modelReference="books.owl#Author"/>
<xsd:simpleType name="Title"

sawsdl:modelReference="books.owl#Title"/>
<xsd:simpleType name="Book-Type"

sawsdl:modelReference="books.owl#Book-Type"/>
</xsd:schema>

</wsdl:types>
<wsdl:message name="get_PRICEResponse">

<wsdl:part name="_PRICE" type="tns:PriceType" />
</wsdl:message>
<wsdl:message name="get_PRICERequest">

<wsdl:part name="_BOOK" type="tns:BookType" />
</wsdl:message>
<wsdl:portType name="BookPriceSoap">

<wsdl:operation name="get_PRICE">
<wsdl:input message="tns:get_PRICERequest" />
<wsdl:output message="tns:get_PRICEResponse" />

</wsdl:operation>
</wsdl:portType>

...
</wsdl:definitions>

Listing 1.2 Sample Annotated File

2 http://wordnet.princeton.edu/
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The nameSim function, due to the nature of the names normally included in an
automatically generated WSDL, can be applied only after a tokenization process
which produces the set of terms to be actually compared. Considering our example,
terms like get PRICE are difficult to find in WordNet or in any other ontologies.
On the contrary, the resulting tokens can be found. Thus, giving na = {ta,i} and
nb = {tb, j} as the set of tokens composing na and nb:

nameSim(na,nb) = maxSim(termSim,{ta,i},{tb, j}) (1.2)

where termSim : (ta, tb)→ [0..1] is the function that computes the similarity between
two tokens. In the literature, several approaches are available to state the similarity
and the relatedness among terms [12]. These algorithms usually calculate the simi-
larity based on the relationships among terms defined in a reference ontology (e.g.,
is-a, part-of, attribute-of ). In our approach, to compute the similarity among terms
we adopt the approach proposed by Seco et al. [15] where the authors adapt existing
approaches relying on the assumption that concepts with many hyponyms3 convey
less information than concepts that have less hyponyms or any at all (i.e, they are
leaves in the ontology).

About the annotation similarity, annSim : (aq,ap)→ [0..1] receives as input two
annotations and returns their similarity according to the way in which they are re-
lated in the reference ontology. In the current implementation, we assume that aq
and ap are included in the same ontology, otherwise annSim returns 0. In future
workwill calculate the similarity of annotations referring to different ontologies.
Since the annotations can be classes or properties, as shown in the Listing 1.3, the
annSim has different behaviors.

function annSim(a_q, a_p) : double
if ((a_q is class) and (a_p is class)) or

((a_q is property) and (a_p is property))
annSim = 1/(pathlength(a_q, a_p)+1)

elseif (a_q is class) and (a_p is property) and
(a_q = domain(a_p))

annSim = 1/#properties in a_q
elseif (a_q is property) and (a_p is class) and

(a_p = domain(a_q))
annSim = 1

end function

Listing 1.3 Annotation similarity function

In case both annotations are classes or both annotations are properties, to com-
pute the similarity between the two annotations we take into account the subsump-

3 A hyponym is a word of more specific meaning than a general term applicable to it, i.e., spoon is
a hyponym of cutlery.
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tion path which connects them in the knowledge base. If there is no paths connecting
the classes, or properties, the similarity is 0. In case aq is a class and ap a property,
it is required that the domain of the property corresponds to the class. If so, it means
that (i) the annotation in the query, i.e., aq, refers to a class with all its properties, and
(ii) the annotation in the published service, ap, refers only to one of those properties.
Finally, in the opposite case, i.e., aq is a property and ap is a class, if ap corresponds
to the domain of the property aq, the similarity between annotations is 1; otherwise,
it is 0. Indeed, now (i) the annotation in the query refers to a specific property, and
(ii) the annotation in the published service certainly includes such a property since
it refers to the whole set of properties for the defined class.

According to this scenario, URBE is based on both knowledge bases: the domain
specific knowledge base offers more accuracy in the relationships of the terms and
is mainly used in annSim; the general purpose one offers wider coverage and it
is mainly used by nameSim. This happens because in a general purpose knowledge
base a word may have more that one synonym set (a.k.a. synset): a set of one or more
synonyms that are interchangeable in some context. On the contrary, we assume
that in a domain specific ontology each word has a unique sense with respect to the
domain itself. For instance, if we consider the noun currency, in WordNet it has two
synsets. The first one is about the financial domain, i.e., the metal or paper medium
of exchange currently being used; the second one is about a generic meaning, i.e.,
general acceptance or use. Comparing the term currency with the term money4 we
can realize that they are strictly related only if we consider the financial domain. On
the other hand, if we consider the other synset the relationship is looser. Therefore,
in case of general purpose ontologies, since it is hard to figure out which is the
correct domain to consider, we employ the average similarity for each synset.

The approach presented in this chapter has been implemented in a prototype.
The source code of URBE is freely downloadable from SourceForge5. In the cur-
rent implementation, WordNet is available as a general purpose ontology and the
Java WordNet similarity library6 developed by Seco et al. [15] is used to compute
similarity between terms in WordNet. SAWSDL4J is used to parse the SAWSDL
and WSDL files. An open-source implementation of a Mixed Integer Linear Pro-
gramming solver, i.e., LpSolve7, is used to solve the linear programming model
on which f Sim relies. Finally, the Jena library is used for accessing OWL-based
domain-specific ontologies.

To evaluate how this approach affects the accuracy of the matchmaker, Figure 1.3
shows how the precision-recall trend changes if the annotations are considered or
not, i.e., if only WordNet or also the domain specific knowledge bases are taken
into account. For this experiment, we ran URBE twice: one time ignoring the anno-

4 http://marimba.d.umn.edu/cgi-bin/similarity.cgi
5 http://sourceforge.net/projects/urbe/
6 http://eden.dei.uc.pt/˜nseco/javasimlib.tar.gz
7 http://sourceforge.net/projects/lpsolve
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tations and comparing only the names (nameSim curve) and the other considering
the annotation similarity (annSim curve), too.8

As shown in the table of the Figure 1.3, the existence of annotation improves not
only the average precision (AP) by almost 20%, but also the response time by about
6%. This difference about the response time depends on the lower time required to
compare the annotations in the ontology with respect to the time required to compare
the names in the WordNet. Indeed, the annotation analysis does not need to tokenize
the terms and, as a consequence, it does not result in more than one comparison.
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Fig. 1.3 Annotation similarity and Name similarity comparison.

Regardless of the existence of the annotations, it is also interesting to analyse
how the accuracy of the URBE matchmaker varies with respect to a variation of
the weights wPT NameSim, wOpNameSim, and wParNameSim. The results dis-
cussed above are obtained with the following configuration: wPT NameSim = 0.1,
wOpNameSim = 0.1, and wParNameSim = 0.7. This means that to obtain the best
results, the influence of the comparison at the different levels is the one shown in
Figure 1.4. It is worth noting that these values for the weights are valid for the
adopted benchmark but, considering the different types of services included in it,
generally speaking we can say that the analysis of parameter names has more than
half of the overall importance, i.e., 56.7%(= 0.9 ·0.9 ·0.7), whereas the portType
and operation names comparisons have a lower influence.

Varying these weights, it is interesting to see how the accuracy varies in a dif-
ferent way with respect to existence or absence of annotations. Now, for the sake
of clarity, we decide to vary only wParNameSim due to its importance in the over-
all computation as discussed above. Tables 1.1 and 1.2 report the average precision

8 All the experiments discussed in this chapter have been done on an Windows XP Pro installed
on a Virtual Machine configured with Intel Core 2 Due 2.33 GHz and 512MB of RAM. The
test collection is SAWSDL-TC v.1 (26 queries and 895 services). The average precision and the
response time are obtained using the Semantic Web Service Matchmaker Evaluation Environment
(SME2) available at: http://projects.semwebcentral.org/projects/sme2/.
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Fig. 1.5 Precision/Recall chart with different values of
wParNameSim.

of the URBE matchmaker for different values of wParNameSim. It is worth noting
how the accuracy is much more sensitive to the variation of the weight in case the
annotations are considered. This because the annotations are more meaningful than
the names. As a consequence, if two annotations are related annSim returns a value
that is close to 1. Thus, even lowering the weight, the contribution of this compar-
ison remains quite significant. On the other side, when the names are considered,
even if they are strictly related, a significant difference in a token makes the result
of nameSim lower. Thus, with lower values of the weight, the impact of this contri-
bution is more reduced. As shown in the tables, the gap between the best and worst
cases is 11.8%, whereas in case the annotations are not considered this gap is only
1.16%. Figure 1.5 shows the precision and recall curves for each of the five dif-
ferent values assigned to wParNameSim that correspond to the average precisions
reported in Table 1.2 plus the best curve for the nameSim (i.e., when no annotations
are available and wParNameSim = 0.7).

It is worth noting that, even in the worst case, i.e., wParNameSim = 0.1, the
similarity computed considering the annotations is better than the best case when
considering only the names, i.e., nameSim curve.

wParNameSim AP
0.9 58.0%
0.7 60.6%
0.5 58.5%
0.3 58.4%
0.1 57.5%

Table 1.1 AP for different values of
wParNameSim (considering nameSim)

wParNameSim AP
0.9 71.3%
0.7 72.7%
0.5 72.0%
0.3 66.4%
0.1 60.9%

Table 1.2 AP for different values of
wParNameSim (considering annSim)
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Focusing on the other weights, i.e., wPT NameSim and wOpNameSim, Figures 1.6
and 1.7 show how the best trends are obtained for lower values of these weights. It is
worth noting that it does not mean that name analysis should be skipped. Indeed, the
‘off’ curves, that represent a null value of these two weights, are under the optimal
behaviour, obtained with wPT NameSim = 0.1 and wOpNameSim = 0.1.
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Fig. 1.6 Precision/Recall chart with different
values of wPT NameSim.
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Fig. 1.7 Precision/Recall chart with different
values of wOpNameSim.

1.4.2 Advantages and Disadvantages

In URBE the similarity computation takes into account all the aspects that define
a Web service interface: the number of elements, the data types, the names, and
the annotations. Although, the Precision/Recall trends is comparable to other ap-
proaches [10, 11], the response time is the main drawback. Indeed, the execution-
time of f Sim is directly affected by the exponential complexity to solve the assign-
ment in bipartite graphs problems [19]. Some heuristics [18] reduce the complexity
to O(n2), where n is the sum of the cardinalities of the two sets we consider. As
mentioned above, the current implementation uses LpSolve that is in charge of the
resolution of the assignment problem, and the response time depends on the strategy
internally adopted by this tool. According to the analysis presented in [9], on aver-
age a Web service has 3 operations and each operation has 4 parameters (considering
both inputs and outputs). Comparing two Web services with these characteristics,
our approach requires about 0.3 sec to calculate the similarity.

According to these values, the response time is acceptable if URBE is adopted as
a tool for supporting the designers (as it is actually designed for). On the contrary,
URBE is not suitable for run-time discovery, for instance in support of automatic
composition. Nevertheless, URBE remains useful even at run-time if the number of
available services is low. This requires a pre-filtering step before the actual execution
of URBE. During this phase, given the initial query, the filter needs to figure out a
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set of services from the repository that can be considered as the best candidates.
Next, URBE will perform a finer-grained analysis to rank them with respect to the
similarity to the query.

The possibility to support both WSDL and SAWSDL Web service interface de-
scriptions is another advantage of URBE. Indeed, although the accuracy of the algo-
rithm in case of WSDL is not as good as in case of annotated interfaces, compared
to the existing methods [13] the results remain acceptable. In this way, URBE can
be adopted in a high number of situations since WSDL is the most used language
for describing Web service interfaces, and has also the advantage that it can be au-
tomatically generated started from the service implementations.

Finally, from a semantic perspective, we noticed how considering annotations
brings a reduction of the response time since the annotation similarity is computed
only considering the path connecting the concepts in the ontologies or, in case prop-
erties are involved, the relationship between classes and properties. Nevertheless,
annotation similarity also improves the accuracy.

1.4.3 Conclusions for Future Work

Further work must focus on improving performance in terms of execution time. First
of all, a clustering of the Web services published in the registry can be periodically
done in order to automatically create the application domain-based classification.
In case the Web services are also described with OWL-S, we plan to exploit also
in creating these clusters. Second, we will refer to [4], where the authors propose a
set of basic principles towards efficient semantic Web service discovery. In particu-
lar, these principles focus on: semantic level (reducing ontology management) and
matching level (reducing the number of comparisons).

Moreover, the semantic analysis of a WSDL specification can consider differ-
ently the comparison between method names and parameter names. About the for-
mer, the verb is more important since a method name should define an action. About
the latter, the parameter name similarity should mainly consider the noun, i.e., the
meaning of data on which the action is performed or its output. Considering the
SAWSDL analysis, the next steps aim to consider in a single step the annotations at
different levels in the structure. For instance, if the required operation is called for-
matDocument, whereas the offered operation has the operation and input parameter
annotated with the ontology concepts format and document, then we should realize
that they are strictly related.

So far, URBE has been designed to support the service substitution from the
perspective of a client that is looking for a service providing an interface similar to
one previously invoked. Changing the standpoint to the provider perspective, we can
assume that the user request is mandatory and the provider must evolve its service
to satisfy the user requirements. Inside the research area of Service Evolution [1],
which also deals with this scenario, URBE can be adopted as a metric for estimating
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the effort needed to evolve a service to another one by analyzing the initial and the
final interfaces.

Finally, we are now also investigating the possibility of translating the idea un-
derlying the URBE matchmaker to a Constraint Logic Programming (CLP) prob-
lem [14]. In this case, from the query the matchmaker can define a set of contraints
that the service to be analyzed needs to deal with. If all the constraints are satisfied
then the similarity will be the maximum. On the other side a null similarity would
indicate that none of the contraints are satisfied. In particular, the work needs to
be based on an extension of CLP, i.e., Semiring-based Contraint Logic Program-
ming [6], which also allows for ranking the solutions obtained by the constraint
analysis process.

1.5 Summary

In this paper we have presented URBE, an approach for evaluating the similarity be-
tween Web service interfaces for substitution purposes. The Web service requestor,
after submitting the interface of the desired Web service, can obtain a list of simi-
lar Web services. The evaluation of the similarity between Web services considers
both the semantics and the structure of a WSDL description. The semantic analysis
takes into account the names adopted to describe the elements composing a Web ser-
vice (operations and parameters), whereas the structure analysis takes into account
the number of operations as well as the number and data types of the parameters.
In addition, our approach also supports SAWSDL as a description model. In this
case, the semantic analysis takes advantage of the semantic relationships between
annotations in SAWSDL, as demonstrated in the Semantic Service Selection (S3)
Contest [10, 11].

A prototype of URBE has been developed as a UDDI-compliant registry that sup-
ports our retrieval model and has been used to validate of our approach. Based on
this implementation, in this chapter we have shown how the annotations included in
a SAWSDL file can influence the accuracy of the matchmaking algorithm in terms
of precision and recall and how this accuracy is also affected by the different ele-
ments composing a Web service interface description: portType, operation,
and parameters.
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