
Policies and Aspects for
the Supervision of BPEL Processes

Luciano Baresi, Sam Guinea, and Pierluigi Plebani

Dipartimento di Elettronica e Informazione – Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

{baresi,guinea,plebani}@elet.polimi.it

Abstract. The execution of business processes with BPEL relies on ex-
ternal Web services, which are not necessarily managed by the process
owner. This implies the need to constantly verify the correctness of the
interactions between the involved parties. This paper proposes a design
process model for the definition of supervised processes, in which super-
vision rules are automatically generated starting from the policies that
characterize the external services. These policies exploit WSCoL as a
language for describing constraints on the messages exchanged with the
business process. In addition, we also present a new version of Dynamo:
a prototype of an aspect oriented execution environment that conjugates
a BPEL engine and a supervision framework.

1 Introduction

The Service Oriented Computing paradigm is driving the development of a new
generation of applications. Here, Web services expose their application logic and
interoperate relying on XML-based protocols, such as SOAP, and descriptions,
such as WSDL. A central node usually coordinates the interactions according to
a predefined process specification in which Web services are used to perform the
activities. BPEL represents the de-facto standard for specifying such processes.
Among other things, BPEL processes specify when a Web service should be
invoked and the data that must be exchanged; they do not, however, specify
how the interaction occurs: i.e., if security needs to be considered, transactions
enforced, or if messaging should be conducted reliabily.

Since the execution of a BPEL process relies on external Web services, not
necessarily managed by the process owner, we need to constantly verify the
corectness of the interactions among the invoked services. Moreover, if something
goes wrong during the process execution, suitable recovery strategies must be
performed. To this end, we propose policies as the means to specify how the
interaction with external Web services must occur.

BPEL provides specific compensation handlers, but the supplied features —
in their current version— are limited. In particular, all compensation activities
are performed using a snapshot of the process state, which precludes the mod-
ification of “live” variables. Moreover, the decision to perform a compensation

is a business-guided decision which, in contrast, must be hard-coded at design
time and must be suitably implemented within the BPEL process.

At this stage, a number of monitoring approaches [1, 2] have been proposed,
to realize if a failure occurs during the invocation of the external Web services.
Other approaches focus on the recovery problem with the goal of supporting
self-healing processes [3]. However, no global solution (i) includes both moni-
toring and recovery, and (ii) considers design-time specification and run-time
management.

The goal of this paper therefore is twofold. On the one hand, we propose a
design process model for the definition of supervised BPEL processes. Supervi-
sion rules are automatically generated starting from the policies attached to the
external Web services and defined by WS-Policy. Both policies and supervision
rules exploit WSCoL (Web Service Constraint Language): a domain indepen-
dent language to state monitoring assertions. We also introduce WSReL (Web
Service Recovery Language) as the language to define the reaction strategy. On
the other hand, we propose a new version of Dynamo (Dynamic Monitoring) [4]:
an AOP-based framework for executing supervised BPEL processes, to monitor
the execution and enact recovery strategies in case anomalous interactions take
place. In this scenario, possible failures arise when: the service is not reachable,
the service is down, or the service returns incorrect data. Analogously, possible
recovery strategies could be to require a retry, a rollback, or a notification to the
process manager.

To better clarify our approach, we introduce a running example. The example
takes place in the field of automotive services. The business process, in fact, is
intended to be executed on an automobile’s onboard device. It provides users
with the possibility to integrate a service for searching for parking lots with their
navigation system.

When the on-board device is launched, it automatically retrieves —from
the navigation system— the coordinates of the destination the user is driving
towards, and the coordinates of the current position. We assume that the co-
ordinates are given using the UTM (Universal Transverse Mercator) coordinate
system 1. The system also asks the user to define a maximum radius within which
to look for parking lots. Once the system has obtained all the required data, it
uses them to call an ActiveBPEL implementation of the process. We assume
that the process interacts with a service similar to Microsoft’s Landmark service
to obtain the parking lots the user can choose from. Informally we can state
that the Map Point service exposes the following policy: “The service promises
to provide a list of parking lots that are less than x meters from a position indi-
cated using UTM coordinates”. How this policy is defined service-side in WSCoL
will be shown in Section 3, while how it is used client-side to define monitoring
and recovery will be demonstrated in Section 4.

The paper is structured as follows. Sections 2 discusses the actors and ac-
tivities required to design a supervised BPEL process. Sections 3 and 4 detail

1 http://en.wikipedia.org/wiki/Universal Transverse Mercator coordinate

system

the approach at the service and the process side, respectively. Section 5 illus-
trates an aspect-oriented prototype environment.Finally, Section 6 compares our
approach with existing ones, and Section 7conludes the paper.

2 Design Process Model

When defining a BPEL process, designers typically follow a standard design
model. First, they search for partner services capable of guaranteeing the func-
tionality and QoS needed to implement their systems. This is typically done by
looking in UDDI-based service registries, where designers can find service de-
scriptions that also contain policies that regulate how the interactions with that
service have to take place. Common examples are directives regarding security
(i.e., authentication, encryption, etc.).

Once the designer has found all the required services, the second step is to
define the business logic itself, using the constructs offered by BPEL. In our
process design model, the responsibility then passes over to to the deployer.
This actor’s main goal is to provide the business process with a valid descrip-
tor for deployment. This role is usually played by a more tech-savvy person,
someone who knows how the BPEL engine will have to be configured to comply
with the policies attached to the services chosen by the designer. For example,
ActiveBPEL uses its deployment descriptor to specify how the engine should be-
have when trying to contact certain endpoints, and how the message it intends
to send them must be built (e.g., a message might need to be encrypted). The
last step consists in deploying the process onto the execution engine.

In this paper we present a new kind of policy assertion, which can be used to
define the functional and non-functional behavioral contract the client and the
provider will have to comply with. We also present a client-side management
framework that can be used in conjunction with a standard BPEL engine to
monitor these policies and to react when they are not satisfied.

This leads to some necessary modifications in the standard process design
model we just presented (see Figure 1). The first step still consists in searching
for appropriate services in a UDDI registry (Step 1). The only difference is that
we assume that the service specifications are augmented with our behavioral
contracts specified using WSCoL (Web Service Constraint Language) [4]. In
practice, the language is here used to define constraints on the messages the
client and the service will exchange. Similarly to what happens in classical design
by contract [5], the service provider promises a certain behavior (specified using
post-conditions), if the client complies with certain requirements (specified using
pre-conditions). If the client does not comply with the pre-conditions then the
service will raise an exception. In contrast, if the service does not respect the
post-conditions then the client should identify the violation and react properly.

Once a designer has evaluated the behavioral specifications, and chosen the
partner services to use, the next step is to design the BPEL process (Step 2).
(Step 3) consists in the deployer configuring the execution environment so that
it can interact correctly with the service. This is achieved semi-automatically by

WSDLWSDLWSDL

UDDI Registry

Service
Policy

A

Service
Policy

C

Service
Policy

B

Designer

1. Search for
services

2. Design the
BPEL Process

3. Extend Service Policy
w/Recovery Strategies

4. Deploy package
into Execution Environment

BPEL
Engine

Dynamo Supervision
Framework

Execution Environment

AOP

Deployer

Supervision
DescriptorBPEL

Process

Deployment
Package

Fig. 1. Process Design Model.

feeding the execution environment with an appropriate descriptor, containing a
declarative specification of (1) the policies the system will monitor client-side,
and (2) the recovery strategies the system will try to undertake in case of invalid
interactions. This can happen for two reasons: it can be the process’ fault (i.e.,
the pre-condition is not verified), or it can be the service’s fault (i.e., the post-
condition is not verified). The descriptor is created by extending the service-side
policy definition. We currently only allow for two kinds of extensions. In the
first, the designers can modify the conditions obtained from the service-side
policy by strengthening the pre-condition and/or weakening the post-condition.
Such modifications are considered acceptable, since they ensure that the partner
service will receive a message which is compatible with the requirements it has
expressed. In the second kind of extensions, the designer can define appropriate
recovery strategies (Step 4). These strategies are performed client-side in case
a pre-condition is violated (in this case the actions are performed prior to the
interaction with the partner service), or in case a post-condition is violated. At
this stage, we are only able to consider a set of recovery strategies that are
related to a well-defined set of possible failures.

This approach results in a process that clearly separates the business logic
(defined in BPEL) from the supervision activities (derived from the specified
policy). This provides for greater flexibility, since both the recovery strategies
and the modules enacting them can be customized without affecting the business
process.

3 Service-side policies and WSCoL

According to the BPEL terminology and to the design process model introduced
in the previous section, partners are Web services capable of performing one or

more activities included in the process. These Web services are usually described
by WSDL documents that define the operations, messages, and data-types in-
volved during the invocation are defined. In this work, we aim at extending such
a description by considering pre- and post-conditions on the incoming and outgo-
ing messages. WSDL, indeed, cannot define, given a input parameter, which are
the admissible values. In the same way, given an output parameter, the service
client is not aware of the possible returning values.

For this reason, we assume that —along with the WSDL document— a WS-
Policy document is provided. WS-Policy is a machine-readable language for rep-
resenting the capabilities and requirements of a Web service. According to this
specification both the service provider and the service user are able to argue
about the behavioral aspects of a Web service. Briefly, a WS-Policy document is
a composition of assertions, each of them representing an individual preference,
requirement, capability or other property of the Web service. Assertions are or-
ganized according to two main operators: ExactlyOne and All. Given a set of
assertions, the ExactlyOne operator states that only one assertion must hold at
the same time, whereas, with the All operator, each assertion must hold.

WS-Policy is a part of the Web Services Policy Framework [6]. This frame-
work also includes WS-PolicyAttachment [7] that specifies how a policy docu-
ment can be attached to WSDL documents, UDDI entries, and generic XML
files. In addition, the framework includes the guidelines for defining domain spe-
cific assertions. As listed in [8], some domain-specific assertions are now available
to describe capabilities and requirements as security, reliable messaging, transac-
tionality, and more. At this stage, no efforts have been done to describe pre- and
post-conditions. For this reason, we aim at proposing such an assertions set, and
to use WSCoL in a way that complies with the guidelines defined in [6]. These
guidelines state that policy assertions representing opt-in, shared, and visible
behaviors are useful pieces of metadata. In our case, pre- and post-conditions
predicate on the incoming and outgoing messages of the Web services that are
partners of our process (the client-side of the interaction). Pre-conditions obli-
gate the service client to send correct data if it aims at obtaining useful results.
In the same way, post-conditions make the service client aware of the range of
possible values the Web service can send as a valid invocation response. There-
fore, pre- and post-conditions defined in WSCoL affect the interaction among
the parties. This means that WSCoL complies with the WS-Policy guidelines.

WSCoL has been previously introduced in [9] to express monitoring policies.
In this work we aim at including an improved version of WSCoL to be used
server-side. As discussed in the next section, the WSCoL expressions defined
server side will inspire the supervision we provide with our client-side frame-
work. WSCoL was originally intended for the monitoring of BPEL processes. It
defines what should be monitored and how to collect the data required for such
monitoring. WSCoL uses three different ways of collecting data: internal vari-
ables are part of the state of the running process, external variables are obtained
externally by means of specific constructs for getting data from any remote com-

<wsp:Policy xml:base="http://www.microsoft.com/policies"
 wsu:Id="MapPointPolicy"
 xmlns:wsp="..."
 xmlns:wsu="...">
 <wsp:All xmlns:wscol="...">
 <wscol:MonitoredItems xmlns:wscol="...">
 <wscol:MonitoredItem type="precondition"
 path="//definitions/message[@name='parkingLotRequest']">
 <wscol:Expression>
 let $zone = "//definitions/message[@name='parkingLotRequest']
 /part[@name='UTMZone']";
 let $northing = "//definitions/message[@name='parkingLotRequest']
 /part[@name='UTMNorthing']";
 let $easting = "//definitions/message[@name='parkingLotRequest']
 /part[@name='UTMEasting']";
 $zone >= 1 && $zone <= 60 &&
 $northing.ends-with("N") &&
 $easting.ends-with("E");
 </wscol:Expression>
 </wscol:MonitoredItem>
 <wscol:MonitoredItem type="postcondition"
 path="//definitions/message[@name='parkingLotResponse']">
 <wscol:Expression>
 let $parkings = "//definitions/message[@name='parkingLotResponse']
 /part[@name='parking']";
 let $radius = "//definitions/message[@name='parkingLotRequest']
 /part[@name='radius']";
 (forall $parking in $parkings;
 ($parking/UTMEasting-$easting)^2 +
 ($parking/UTMNorthing-$northing)^2 <= $radius^2);
 </wscol:Expression>
 </wscol:MonitoredItem>
 </wscol:MonitoredItems>
 </wsp:All>
</wsp:Policy>

Fig. 2. Landmark Ws-Policy example

ponent, which exposes a WSDL interface, and historical variables are obtained
from previous process executions.

When using WSCoL to define service-side policies, however, a few consid-
erations must be made. First of all, instead of predicating on BPEL internal
variables, we predicate on the messages being received and sent by the service.
Secondly, both external and historical data are only considered at the client-side,
to effectively monitor and enforce the constraints defined at the server-side.

To check whether collected data comply with defined constraints, WSCoL
offers the typical boolean operators, such as && (and), || (or), ! (not), => (im-
plies), and <=> (if and only if), relational operators, such as <, >, ==, <=, and
>=, and mathematical operators such as +, −, ∗, /, and %. The language also
supports predicate on sets of values through the use of universal and existential
quantifiers, and other constructs, such as max, min, avg, sum, and product.

Considering our running example, Figure 2 shows the WS-Policy document
attached to the Landmark Web service 2. As pre-condition, the policy requires
a valid UTM coordinate. A UTM coordinate is composed of three main infor-

2 In this paper, for the sake of clarity, we use a simplified WSDL

mation: zone, easting, and northing. Zone is a number from 1 to 60. Northing
is a string consisting of six digits and an ending ‘N’ character. Finally, easting
is similar to northing except it ends with an ‘E’. The post-condition guarantees
that the parking lots found are no more than x meters away from the specified
UTM location.

4 Client-side descriptors and WSReL

As previously stated, the client-side descriptor that instructs the Dynamo Su-
pervision Framework is built as an extension of the service-side policies defined
by the service provider. Two possible extensions are possible. In the first, the
designer can take the policy defined in WSCoL and strengthen the pre-condition
or weaken the post-condition. This guarantees run-time conformance to the orig-
inal policy. In the second, the designer can add client-side recovery strategies to
be performed if either the client or the service is not complying with the joint-
behavioral contract. Due to lack of space we will not consider the first kind of
extension but concentrate on how recovery is defined in WSReL.

4.1 Recovery Strategies

The recovery strategies in WSReL are based around the definition of a finite (but
extensible) set of Atomic Actions. These actions are considered the building
blocks we want to mix and match to define complex strategies. Our way of
intending recovery is that these atomic actions work on a single process instance.
They do not have access to the process definition. Therefore, the performed
recovery is only valid for the life-span of a single process instance3. Moreover,
the recovery strategies are performed synchronously (i.e., while the process is
momentarily blocked).

The current set of Atomic Actions comprises: ignore, to simply ignore the
anomaly, notify, to communicate to a user that something wrong happened, halt,
to stop the process execution, retry, to impose that the system retry to execute
the invocation a user-defined number of times, rebind, to indicate that the cur-
rently used Web service must be substituted with another service. At this stage
we assume that the designer of the recovery strategy must indicate the endpoint
of an equivalent service. For example, [10, 11] discuss approaches for QoS-based
Web service selection and Web service substitution with different interfaces are
discussed. Additional Atomic Actions are: changeSupervisionRules, to modify
how supervision is achieved and therefore to relax or tighten some constraints,
changeParams, to modify the parameters associated with the considered super-
vision rule, changeProcessParams, to modify the parameters associated with the

3 This allows us to have different client-side monitoring and recovery specifications
for different stake-holders. However, it could be interesting to investigate recovery
strategies, defined by the process provider itself, that have access to the process
definition.

executing process, call, to call an external Web service, and processCallback, to
directly invoke one of the event handlers supplied by the BPEL process.

Complex Recovery Strategies are not direct aggregations of atomic actions.
Instead they are defined as multi-step processes, in which each step (i.e., each
Recovery Step) attempts to fix the problem before giving up and passing on to
the next. If a step is unsuccessful, it is rollbacked so that the next step can be
attempted. If a step is successful, the system skips the others. A single step is
defined as a conjunction of atomic actions that have to be executed. The way the
system knows if a step was successful depends on the actions it contains. Some
of the actions, in fact, require monitoring to be re-performed, while others are
always successful (e.g., the ignore action). Another thing to keep in mind is that
these actions have the power to modify the set of monitoring data being used,
and the monitoring and recovery specifications themselves. Therefore, every time
a step terminates unsuccessfully, all values are reverted to the original situation,
as if no recovery had been attempted. This way, we deal with possible severe
situations where the failure is not cause by the process to be monitored. On the
other hand, the error might come by other software, such as operating systems,
application servers, or BPEL engines.

WSReL allows more than one recovery strategy to be defined for a given
erroneous situation. In fact, each strategy is always accompanied by a condi-
tion expressed in WSCoL and specified by the designer. Strategies also have an
implicit prioritization, given by the order in which they are defined. The first
strategy that can be applied is executed and the others are ignored. This is a
simple way to avoid problems with multiple strategies enabled at the same time
and to relax the constraint that conditions must be mutually exclusive.

4.2 Example descriptor

Figure 3 illustrates an example of a client-side monitoring and recovery descrip-
tor. It illustrates what is defined client-side for the server-side post-condition.
First of all, the supervision rule contains the same WSCoL post-condition in-
cluded in the server-side policy. This defines what the client-side framework will
look out for.In case the post-condition fails, the strategies included in the de-
scriptor are considered. Specifically, each strategy has a <strategyCondition>
expressed in WSCoL. If the related expression holds then the specified <step>s
are successively performed, until one of them results in an effective recovery. The
number attribute indicates the order in which the steps are performed. In the
example, there are two recovery strategies. The first, which is performed when
the request is considered urgent by the user, consists of three recovery steps. The
framework first tries to re-invoke the service, and then tries to dynamically bind
to an equivalent service (i.e., to a service with the same WSDL interface). If nei-
ther is successful, its last resort is to notify the process provider via e-mail and
halt the process execution. With the <defaultstrategy> we define a recovery
strategy to be performed when all previous conditions do not hold. In this case,
this strategy consists of only one step, which is to immediately notify the prob-
lem to the process provider and halt the execution. For the sake of simplicity,

<wssup:SupervisionRule>
 <wssup:postcondition>
 <wscol:Expression id="postcond_1">
 let $parkings = "//definitions/message[@name='parkingLotResponse']
 /part[@name='parking']";
 let $radius = "//definitions/message[@name='parkingLotRequest']
 /part[@name='radius']";
 (forall $parking in $parkings;
 ($parking/UTMEasting-$easting)^2 +
 ($parking/UTMNorthing-$northing)^2 <= $radius^2);
 </wscol:Expression>
 </wssup:postcondition>
 <wssup:strategy>
 <wssup:strategycondition id="strategycond_1">
 <wscol:Expression>``Urgent request''</wscol:Expression>
 </wssup:strategycondition>
 <wssup:step number="1">
 <wssup:retry times="1"/>
 </wssup:step>
 <wssup:step number="2">
 <wssup:rebind url="http://..."/>
 </wssup:step>
 <wssup:step number="3">
 <wssup:notify>
 <wssup:message>...</wssup:message>
 <wssup:address>...</wssup:address>
 </wssup:notify>
 <wssup:halt/>
 </wssup:step>
 </wssup:strategy>
 <wssup:defaultstrategy>
 <wssup:step number="1">
 <wssup:notify>
 <wssup:message>...</wssup:message>
 <wssup:address>...</wssup:address>
 </wssup:notify>
 <wssup:halt/>
 </wssup:step>
 </wssup:defaultstrategy>
</wssup:MonitoringRule>

Fig. 3. WSReL example

the strategy conditiosn are reported informally. Corresponding WSCoL expres-
sions predicate on user context variables, which are external variables, stating
the urgency of the request.

5 Prototype

The prototype implementation we present in this section is based on AOP tech-
niques. Its main goals are to provide BPEL process providers with the tools they
need to deploy and manage processes that are aware of the kind of supervision
rules presented in Section 4.

In this solution, business logic and supervision policy enforcement are defined
and treated separately, since we advocate that separation of concerns facilitates

Configuration
Manager

Recovery
Manager

WSCoL
Data Analyzer

Monitoring
Manager

Invoker

Storage
Component

(AspectJ)

(JBoss Rules)

(Schematron)

(persistent EJB)

(Jax-WS)

(persistent EJB)

AOPActiveBPEL
Engine

Fig. 4. The Architecture of the Dynamo Prototype.

both the design itself and later management. In this architecture, we augment
—using AOP technology [12] (i.e., AspectJ [13])— a standard BPEL engine (i.e.,
ActiveBPEL) with notions on how to verify monitoring expressions and how to
perform recovery. Business processes go unmodified and are deployed as usual,
while supervision policies are deployed to a persistent component where they
await activation.

Figure 4 illustrates the overall design of the prototype. It is made up of seven
main components.
1) The ActiveBPEL Engine is the BPEL engine we have chosen for our proto-
type, due to the fact that it is currently the most mature open-source engine
available. Its implementation revolves around the run-time visit (using the Vis-
itor pattern [14]) and management of an internal tree-based representation of
the process. A thorough study of the platform led us to define our pointcuts4 as
(1) after the engine visits a Receive node, (2) before and after it visits an Invoke
node, and (3) before and after it visits a Pick node. These were chosen since
they represent the points in which the process interacts with the outside world.
2) The Monitoring Manager represents the main advice, that is to say the com-
ponent that is weaved into the execution environment. The result is that —after
the weaving— this component has direct access to the internal representation
of the process in execution, and to its state (i.e., the set of instantiated BPEL
variables). This allows it to collect data from the process itself, and provide them
for analysis. This component is also responsible for managing all the steps in the
monitoring process. We will defer a more in depth analysis of its behavior to
Section 5.1.
3) The Configuration Manager is a persistent component in which we store
all the supervision descriptions that have been devised, and that are waiting
to be activated. The Monitoring Manager can query its contents by specifying

4 This term indicates —in the standard AOP terminology— the points in which we
are interested in inserting our cross-cutting concern. In our case, it indicates the
points in which we want to activate supervision.

Data SourceWeb Service Invoker

WSCoL
Analyzer

Configuration
Manager

ActiveBPEL
Engine

Monitoring
Manager

1: Ask for
monitoring rule

6 & 13: Monitoring
Result

5 & 12: Perform
Data Collection

8: Invoke
Service

3 & 10: Send data

Storage
Component

Get/set Historical
Variables

2 & 9: Get Internal
Variables

4 & 11:Get External
Variables

7 & 14: Proceed with
Execution

Fig. 5. Monitoring pre- and post-conditions.

the process it is executing, the unique id of the user of the business process,
and the Receive, Invoke, or Pick activity being executed. As the reader can
see, these allow the system to distinguish between different supervision policies
for different users, and to guarantee personalized supervision. 4) The WSCoL
Data Analyzer is the component responsible for actually verifying the monitoring
expressions. The component takes the data collected from within the process, and
the monitoring rules extracted from the Configuration Manager, and provides a
monitoring result. If it needs extra data to perform its analysis (e.g., external or
historical WSCoL variables), it can interact directly with the Invoker component
to obtain data from external data sources, or with the Storage Component to
obtain data pertaining to previous supervision activities.
5) The Recovery Manager is responsible for the execution of recovery strate-
gies when monitoring has signaled an anomaly. It is based on the ECA rules
paradigm [15] (i.e., event-condition-action), and was built using JBoss Rules [16]
(formerly known as Drools). The event is implicit and consists in the anomaly
itself being signaled. The condition consists of a two-level nesting of if-then-else
clauses that allow the system to distinguish between different actions depending
on the extent to which a monitoring expression is unverified. Both the clauses
are expressed in WSCoL. The former reply the pre- or post-condition included in
the service-side policy. The latter allows us to distinguish aong different reaction
strategies. Finally, the action is a recovery strategy, as defined in Section 4.
6 and 7) The Invoker and the Storage Component are utility modules. The former
allows to dynamically bind and invoke any Web service. The latter is used to
store data collected during previous activations of the supervision framework.

5.1 Monitoring Manager

Figure 5 illustrates how all the aforementioned components come together to
provide supervision. When the process execution is intercepted and the Moni-
toring Manager is activated, the first thing it does is to obtain the processID,

the userID, and the invokeID needed to query the Configuration Manager. All
these data are automatically provided by the execution engine, except for the
userID which is provided by the user in the SOAP message that instantiates the
process5. In our current implementation, the userID must be provided by the
user when a new instance of the process is requested. However, in the future,
the ID could be provided automatically by the system through authentication.

The Configuration Manager is then queried for supervision rules that have
been defined by that user, for that process, and in particular for that activity
(Step 1). If none are found the execution is immediately returned to the engine.

However, if a rule exists, and it defines a pre-condition, the Monitoring Man-
ager reads the monitoring expression to see what WSCoL internal variables have
been defined, and need to be collected (Step 2). This is simplified by the fact
that, thanks to the AOP weaving, the Monitoring Manager lives in the same
execution space where the ActivbeBPEL variables are stored. Once all the data
collection has been achieved, the data is formatted into XML and sent to the
WSCoL Analyzer together with the monitoring expression itself (Step 3). The
WSCoL Analyzer proceeds to finish data collection (external and historical vari-
ables) and perform verification. Once it has finished, the monitoring result is
returned to the Monitoring Manager (Steps 4, 5, 6). At this point, if no error
has been discovered the framework returns control to the execution engine which
performs the service invocation (Steps 7, 8). When the supervision framework
is re-activated, after completing the execution of the Invoke activity, it checks
whether there is a post-condition. Its data collection and analysis are performed
in the same way as for the pre-condition (Steps 9, 10, 11, 12, 13).

5.2 Recovery Manager

The current version of the recovery manager has been implemented using the
JBossRules ECA rule engine. We use data collected during monitoring, and the
monitoring results themselves, to produce JBoss rules that will “fire” according
to the WSCoL strategy conditions in WSReL.

In order to guarantee the correct activation order for the recovery strategies,
defined explicitly by the WSCoL conditions associated with the single strategies
and implicitly by prioritization, we make use of: (1) the concept of salience, an
integer value that gives a rule a certain priority (higher priority rules are executed
before lower priority ones, while rules with the same priority are executed in a
LIFO manner), (2) the concept of activation-group, a value which groups rules
into sets in which only one rule can be activated, and (3) the concept of agenda-
group, which allows the engine to discriminate between rule sets, and to execute
only those actions that belong to the agenda-group that is said to be in “focus”
(this can be set programmatically).

In our example we have two recovery strategies (see Figure 6). They are
defined with the same agenda-group, meaning that the rule engine will try to

5 This is the only modification that needs to be performed on the process definition
to enable supervision

rule "Strategy_1"
 salience 2;
 agenda-group="postcond_1"
 activation-group="ag1"
 when
 strategycond_1
 then
 recov_strategy_1();
end

rule "Strategy_2"
 salience 1;
 agenda-group="postcond_1"
 activation-group="ag1"
 when
 strategycond_2
 then
 recov_strategy_2();
end

Fig. 6. JBoss rules example.

activate them at the same time. However, they have two different salience values,
meaning that strategy 1 will be considered first. An activation-group is made
explicit since the two strategies are mutually exclusive. If the first fails to “fix”
the problem, then the second is activated.

Finally, the recovery manager performs the single recovery strategies by
invoking a Java application (recov strategy 1() and recov strategy 2())
which contains the strategy steps and their atomic actions. In addition, the
Monitoring Manager is also responsible for re-evaluating monitoring to see if
recovery was successful. Monitoring being re-evaluated also translates into a
complete cleansing of the JBoss Rules working space.

6 Related work

Much work has been accomplished in the field of the specification and monitoring
of service level agreements for Web services. Keller and Ludwig [17] advocate the
need for a framework that can provide tools for the specification, measurement,
and monitoring of QoS parameters. Ludwig et al. also present a revisitation of
their work in [1], in which they adopt WS-Agreement [18] as their agreement
language. They propose Cremona (Creation and Monitoring of Agreements) as
an architecture that can facilitate the design and management of agreements
through the use of templates. The architecture is mainly composed of two parts:
an Agreement Protocol Role Management component, intended to help create
and access agreements at run-time, and an agreement Service Role Management
component, required to trigger agreement-driven provisioning of a service and
to monitor their compliance. With respect to Cremona, which concentrates on
QoS, our approach can be used to define more general properties. This guaran-
tees a more widespread solution which can be adapted to many different needs.
Spanoudakis and Mahbub [2] have also developed a framework for monitoring
requirements of BPEL-based service compositions. Their approach uses event-
calculus for specifying the requirements that must be monitored. Requirements
can be behavioral properties of the coordination process or assumptions about
the atomic or joint behavior of the deployed services. The system observes sys-
tem events during execution, and stores them in a database. Run-time check-

ing is then interpreted as integrity constraint checking in a temporal deductive
databases. Like our approach, they also provide reactive monitoring since erro-
neous situations can be found only after they have occurred. It is a less intrusive
approach that proceeds in parallel to the execution of the business process. This
leads to a lesser impact on performance but also to a lesser responsiveness in
discovering run-time erroneous situations.
In our work, pre- and post-conditions are expressed using WSCoL since it pro-
vides compatibility with the rest of the proposed solution. Nevertheless, the
policies can include conditions expressed according to different languages such
as OCL (Object Constraint Language) or specific logics (e.g. temporal or de-
scriptive). Even if some work, such as OWL-S [19] and WSDL-S [20], include
pre- and post-conditions directly into the functional specification, we prefer to
exploit WS-Policy. This way, we separate the technical details of the invocation
from the constraints on exchanged data.

7 Conclusions and future work

In this paper we have presented an approach to supervise BPEL processes by
exploiting policies and aspects. Policies are involved at design-time, when the
process owner selects the external Web services to be invoked during the process
execution. WS-Policy has been adopted as the language for expressing the behav-
ioral aspects of the external Web services in term of pre- and post-conditions. In
particular, WSCoL inspires a new set of assertions compliant with the WS-Policy
framework. Policies also drive the process deployer during the configuration of
the BPEL process. Using a WSReL descriptor the process is instructed to check
the pre- and post-conditions during the service invocation and to properly react
in case of violation. The descriptor is semi-automatically generated by starting
from the policies attached to the external services. Finally, we present an AOP-
based prototype, which is responsible for the execution of the business logic, and
for its monitoring and recovery.

References

1. Ludwig, H., Dan, A., Kearney, R.: Cremona: an architecture and library for cre-
ation and monitoring of ws-agreements. In: Proceedings of the 2nd International
Conference on Service Oriented Computing, ACM (2004) 65–74

2. Mahbub, K., Spanoudakis, G.: A framework for requirents monitoring of service
based systems. In: Proceedings of the 2nd International Conference on Service
Oriented Computing, ACM (2004) 84–93

3. Modafferi, S., Mussi, E., Pernici, B.: SH-BPEL: a self-healing plug-in for Ws-
BPEL engines. In: 1st workshop on Middleware for Service Oriented Computing
(MW4SOC ’06), Melbourne, Australia (2006) 48–53

4. Baresi, L., Guinea, S.: Towards dynamic monitoring of ws-bpel processes. In:
Service-Oriented Computing - ICSOC 2005, Third International Conference, Ams-
terdam, The Netherlands, December 12-15, 2005, Proceedings. Volume LNCS 3826.
(2005) 269–282

5. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10) (1992) 40–51
6. Vedamuthu, A., Orchard, D., Hondo, M., Boubez, T., Yendluri, P.:

Web Services Policy 1.5 - Primer. http://www.w3.org/TR/2006/

WD-ws-policy-primer-20061018 (2006)
7. C. Sharp (ed.): Web Services Policy 1.2 - Attachment (WS-PolicyAttachment).

http://www.w3.org/Submission/WS-PolicyAttachment/ (2006)
8. VV.AA.: Web Service Policy Framework. http://www-128.ibm.com/

developerworks/library/specification/ws-polfram/ (2006)
9. Baresi, L., Guinea, S., Plebani, P.: WS-Policy for Service Monitoring. In: Tech-

nologies of e-Services (TES). LNCS 3811 (2005) 72–83
10. Antonellis, V.D., Melchiori, M., Santis, L.D., Mecella, M., Mussi, E., Pernici, B.,

Plebani, P.: A layered architecture for flexible web service invocation. Softw.,
Pract. Exper. 36(2) (2006) 191–223

11. Fugini, M., Plebani, P., Ramoni, F.: A user driven policy selection model. In
Dan, A., Lamersdorf, W., eds.: Service-Oriented Computing - ICSOC 2006, 4th
International Conference, Chicago, IL, USA, December 4-7, 2006, Proceedings.
LNCS, Chicago, Springer (2006) 427–433

12. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: ECOOP. (1997) 220–242

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In Knudsen, J.L., ed.: ECOOP. Volume 2072 of Lecture
Notes in Computer Science., Springer (2001) 327–353

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA (1995)

15. McCarthy, D., Dayal, U.: The architecture of an active database management
system. Proceedings of the 1989 ACM SIGMOD international conference on Man-
agement of data (1989) 215–224

16. Proctor, M., Neale, M., Lin, P., Frandsen, M.: Drools documentation. Technical
report, JBoss.org (2006)

17. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Management
11(1) (2003) 57–81

18. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-
Agreement). Global Grid Forum GRAAP-WG, Draft, August (2004)

19. Martin (ed.), D.: OWL-S: Semantic Markup for Web Services. W3C Submission.
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/ (2004)

20. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Shet, A., Verma,
K.: Semantic Annotations for WSDL. http://www.w3.org/Submission/WSDL-S/

(2005)

