
On Automated Generation of Web Service Level
Agreements

Cinzia Cappiello, Marco Comuzzi, and Pierluigi Plebani

Dipartimento di Elettronica e Informazione – Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
{cappiello,comuzzi,plebani}@elet.polimi.it

Abstract. Before a service invocation takes place, an agreement be-
tween the service provider and the service user might be required. Such
an agreement is the result of a negotiation process between the two par-
ties and defines how the service invocation has to occur. Considering the
Service Oriented Computing paradigm, the relationship among providers
and users is extremely loose. Traditional agreements are likely to concern
long term relationships and to be manually performed. In this paper, we
propose a model to generate service level agreement on-the-fly. Just be-
fore the invocation commences, the quality of the service is negotiated
in order to generate a service level agreement tied to that specific invo-
cation. Such an approach relies on a quality model that supports both
users requirements and providers capabilities definition.

1 Introduction

Organizations are increasingly exporting their services as Web services [1]. Such
a proliferation increases the likelihood that users may find several services satis-
fying their functional requirements [2–4]. When users can choose among a set of
functionally equivalent services, non-functional requirements become the driver
for Web service selection. As a consequence, we need to define and manage Ser-
vice Level Agreements (SLAs) between service providers and users [5].

In Service Oriented Computing paradigm, an SLA is defined as a binding
contract which formally specifies user expectations about the solution and toler-
ances. SLA is a collection of service level requirements that have been negotiated
and mutually agreed upon by the information providers and the information con-
sumers. Usually, providers define some service levels as a fixed combination of
their specific capabilities on a set of quality dimensions, and users must choose
one these levels. Reasonable service levels that meet user requirements can be
achieved by increasing the flexibility of the SLA definition. We argue that this
could be obtained by allowing parties, i.e., users and providers, to re-examine and
to negotiate defined levels. It is worth noting that identifying attainable service
levels is a time consuming activity for the providers. Adding negotiation features
creates further overhead during SLA definition activity. For these reasons, our
approach does not identify service levels in advance. Providers only clarify their
capabilities and service levels will be identified on-the-fly considering the users

expectations. Service levels negotiation is also performed on-the-fly to reduce its
overhead.

The discussion of mechanisms for on-the-fly generation of the SLA will be
tied to a running example. We focus on a TrafficMonitoring service example.
The TrafficMonitoring Web service provides up-to-date information about local
traffic to business and retail customers across the US. The quality of such a
service is defined by two classes of quality dimensions: technical and domain
dependent.

Technical quality dimensions refer to technical aspects of service provision-
ing. Quality dimensions belonging to this class can be associated with any Web
service, and do not explicitly depend on a characterization of the domain in
which a Web service operates. For the sake of simplicity, we consider three qual-
ity dimensions, that is, availability, data encryption, and response time. Readers
may refer to [6, 7] for an extensive review of Web service technical quality. Avail-
ability refers to the expected percentage of time the system is up and accessible.
Data encryption refers to the algorithms adopted for protecting data from ma-
licious accesses. Eventually, response time refers to the expected delay between
the moment in which a request is sent and the moment in which results are
received [6].

Domain dependent quality dimensions strongly rely on the type of Web ser-
vice that is under consideration. For the TrafficMonitoring example, we consider
the covered area, routes set, and detail level dimensions. The covered area di-
mension characterizes the extensiveness of the area over which the service is able
to provide traffic information. A service, for instance, may provide information
only on national highways, while other ones may also consider interstate or local
routes and downtown traffic conditions. Similarly, the detail level of traffic infor-
mation provided by a service may also vary. A service may provide information
on accidents and traffic jams, while other ones may also provide information
about closed routes, detours, and predictions about future conditions of local
traffic.

The paper is organized as follows. Section 2 presents a model to describe
Web service quality, provider capabilities, and user requirements. Section 3 de-
scribes the negotiation model by which SLAs can be obtained on-the-fly. Section
4 discusses related work, while conclusions are finally drawn in Section 5.

2 Quality model

A negotiation process occurs whenever both a user and a provider are able to
define the documents specifying the requirements and the capabilities, namely.
In a Web service environment, where users and providers might not know each
others in advance, these documents must rely on the same language. In [8], a
model able to express the quality of a Web service is discussed. The same model,
discusses in the following, will be adopted in this work as well.

eavailability
K=5
pc1=[0,0.3)
…
pc5=[0.7,1]

0.5

1

10.3
qd1.V

0.2
0.4

0.6
0.8

0.6 0.7

(a) Availability

edata_encryption
pc1={AES-128} K=3
pc2={AES-192}
pc3={AES-256}

qd2.V

1

AES128 AES192 AES256

(b) Data Encryption

NE NW SW

ecovered_area

qd3.V

NOT-NEGOTIABLE

SE

1

(c) Covered area

Fig. 1. Evaluation functions and primitive service classes for availability, data encryp-
tion, and covered area.

The quality of a Web service is defined by a set of quality dimensions 1 each
of them associated to a given quality aspect. More formally, we define a quality
dimension qdi as:

qdi = 〈name, V, ef(V), PC〉 i = 1, . . . , I. (1)

The name uniquely identifies the quality dimension. The element V corre-
sponds to either categorical or interval admissible values. In the former case, the
admissible values will be included in a specific vector V = {vh} (h = 1, . . . ,H),
while, in the latter case V will be defined by its extremes, i.e., V = [vmin, vmax].
The function ef : V → [0..1] represents the quality evaluation function, i.e.,
how the quality increases or decreases with respect to the admissible values: 0
means lowest quality, 1 highest quality. The trend of ef is usually defined by an
utility function, e.g., linear, logarithmic, exponential, sigmoidal. The admissible
value set V is organized in disjoint primitive service classes PC = {pck} (k =
1, . . . ,K) and are obtained as follows:

– In case of categorical values, the primitive service classes coincide with the
values that the dimension may assume: i.e, qdi.PC ≡ qdi.V ,H = K.

– In case of interval values, primitive service classes are obtained by split-
ting V = [vmin, vmax] into K intervals, so PC = {pck = [pckmin

; pckmax
]}

where pckmax
= pc(k+1)min

, pc1min
= vmin, pcKmax

= vmax. pck ranges are
obtained as follows: let divide qdi.ef(V) in K ranges {[ekmin

; ekmax
]}, then

pkmin = qdi.ef
−1(ekmin) and pdkmax = qdi.ef

−1(ekmax).

Figure 1(a) and 1(b) show, respectively, this methodology applied to the
availability and data encryption dimensions in the running example. The de-
finition of primitive service classes is exploited by the negotiation algorithms
described in Section 3. We assume that additional elements, such as measurement
units or metrics, are also defined. We do not explicitly include them in qdi since
they are not relevant for our approach
1 In the literature, quality dimensions are also named quality attributes or quality

parameters.

Given a Web service, its quality is defined by the set QD = {qdi}. As men-
tioned above, negotiation takes place only if both requirements and capabilities
are expressed on the same quality dimensions set. For this reason we assume that
a third party, called community, is in charge of identifying the set of relevant
quality dimensions. In this way, the quality dimensions included in QD will be
used (i) by the provider to express the offered quality, i.e., capabilities C and (ii)
by the user to define the required quality, i.e., user requirements UR.

As defined in [9], a community is a group of people which aims at proposing
a specification for a group of objects with some relevant common characteris-
tics. More generally, given an application domain, we suppose that a community
exists and produces the set of relevant quality dimensions. Sometimes, the com-
munity can be easily identified since it is explicitly constituted (e.g., tourism
community, financial community). Most of the times the community associated
with an application domain does not explicitly exist. For example, if we want
to buy a laptop then everyone can list the set of relevant quality dimensions
which the evaluation of the laptop quality relies on, e.g., CPU, memory, HD
capacity, screen resolution, and so on. Roughly speaking, the agreement on QD
between providers and users definitely exists but it is implicit. In some way,
introducing the actor community means to make explicit this implicit common
understatement. s

Table 1 shows the quality dimensions included in QD for the TrafficMonitor-
ing example. Once the community decides to include a qdi in QD, the commu-
nity also defines the range of admissible values, the related evaluation function
qdi.ef , and the primitive service classes qdi.PC. In Table 1, all the qdi ∈ QD are
described. In some case (e.g., covered area), the community cannot state which
are the best and worst values, since they depend on the user preferences. So, the
evaluation function always returns 1. This kind of dimensions, as explained in
Section 3, are non-negotiable.

Table 1. Quality parameters for Traffic Monitoring example.

name V ef P

availability [0,1] sigmoidal {[0, 0.3); [0.3, 0.5);
(see Figure 1(a)) . . . ; [0.7, 1]}

data encryption [AES-128;AES-192;. . .] linear [AES-128;AES-192;. . .]

response time [0,10] inverse linear {[0.2, 1], . . . , [9, 10]}
covered area [SouthEast;SouthWest; 1 ∀vh ∈ V [SouthEast;. . .]

NorthEast;NorthWest] (see Figure 1(c))

routes set [Highways;interstate; 1 ∀vh ∈ V [Highways;interstate;
local;. . .] local;. . .]

detail level [jams; detours; 1 ∀vh ∈ V [jams; detours;
toll;. . .] toll;. . .]

It is worth noting that the range of admissible values has been identified
regardless of a specific Web service implementation. So, we assume that all the

existing Web services, given a quality dimension, can only offer a subset of the
admissible values defined by the community. In addition, users will customize
the quality dimensions accordingly to their preferences.

Starting from the QD defined by the community, Sections 2.1 and 2.2 de-
scribe, respectively, how the capabilities and the requirements can be defined.

2.1 Capabilities

Capabilities reflect the quality offered by a Web service provider. Focusing on
the service description, the provider before publishing its Web service will define
a document expressing the functional aspects. About this, WSDL represents the
de-facto standard that identifies the set of available operations and exchanged
messages. Along with the functional aspects, the service provider also needs to
attach a document in which the offered quality is described. At this stage, the
literature does not include a language for quality description with the same
consensus as WSDL does for the functional aspects. Anyway, we think that the
capabilities as introduced in the following can be simply expressed according to
languages such as WSOL [10] or WS-Policy [11].

We define a capability c(qdi) as a restriction on the range of admissible values
of the quality dimension qdi. More precisely:

c(qdi) = 〈qdi.name, offering, qdprice(offering)〉, (2)

where offering ⊆ qdi.V represents the restriction on the range of admissible
values. In this way, the provider defines, given a quality dimension, which are
the actual values the provider is able to support. In addition, the provider also
defines qdprice function which maps the dependency between the offered values
and the price per user associated with such a provisioning.

According to this model, the provider during the publication process of a
Web service, will attach a document C collecting all the supported capabilities.
In particular:

C = {c(qdi)} ∀qdi ∈ QD. (3)

In other words, a capability document must include all the quality dimen-
sions previously identified by the community. Table 2 lists the capabilities of a
hypothetical TrafficMonitoring service provider. For instance, the offered avail-
ability is included in the range [0.5, 1.0] and the price for such a provisioning
is given by a fixed amount (e.g., 30$) and a variable one that varies according
to the actual value of the availability (e.g., availability*5$). Similarly, different
prices will be associated to different covered area. Since US NorthEast is more
populated than US NorthWest then the price varies accordingly (e.g., 5$ rather
than 3$).

2.2 Requirement model

Similarly to the capabilities, the user requirements are expressed on the basis
of the quality dimensions identified by the community. In particular, for each

Table 2. Capabilities for TrafficMonitoring service.

qd offering qdprice

availability [0.5,1.0] 30$+(availability*5$)

data encryption [AES-128] 500$

response time [1,2] 3$*(5$/timeliness)

covered area [NorthEast;NorthWest] 5$-NE;3$-NW

route set [interstate;local] 5$-interstate;10$-local

detail level [detours] 10$

qdi ∈ QD users operate a restriction on the admissible range of values. With this
operation, the users state which is the required quality. Hence, a user requirement
R that will be compared to the capabilities C during to the negotiation process
is defined as:

UR = 〈{ur(qdi)}, budget〉, (4)

where the {ur(qdi)} represents the user requirements of a specific qdi and budget
is the amount of money that the user is willing to pay for the service. In detail:

ur(qdi) = 〈qdi.name, request, w〉. (5)

Here request ∈ qdi.V represents the restriction on the range of admissible
values. This restriction corresponds to the values required by the user for the
given quality dimension.

The element w in ur represents the weight that identifies how much the
related quality dimension qdi influences the overall quality of the service. It is
worth noting that the weight assignment activity is a crucial point of the method.
It can be performed in different ways. The simplest way could be to let users
associate with each quality dimension a weight to express the importance that
the dimension has for the specific user class. In this case the only constraint is
that the sum of the weights associated with all the dimensions has to be equal to
1. This method is difficult to apply, since the absolute relevance of a dimension on
the total quality is hardly identifiable. For this reason, in this model we assume
that the weight assignment is driven by the AHP (Analytic Hierarchy Process)
approach, a decision making technique developed by T.L. Saaty [12]. This is a
qualitative approach in which the user only states if a sub-dimension is more
influent than another one on the overall quality. We assume that all the quality
dimensions are independent. AHP is a decision-making technique that assigns to
each sub-dimension a score that represents the overall performance with respect
to the different parameters. AHP is suitable for hierarchical structures as the
quality model described previously and proposes to user pairwise comparisons
between sub-dimensions.

Considering the difficulty that some users have in the requirements specifica-
tion, we assume that the community supports them by preliminarily identifying

their profile. We borrow the profiling concept from the Web Information Systems
(WIS) literature in which it is used for the personalization of content to user
expectations. Profiling is the technique through which data are collected and
manipulated with the goal of identifying and describing the profile of an entity,
such as a user, an object, a product, or a process [13]. A profile is a source of
user requirements, in fact it is a structured representation of the information that
describes users and their preferences along the services that they require. This
information can be obtained by suitable architectures and modules operating
along with the Web service infrastructure.

In the requirement model proposed in this paper, users are characterized by
a profile and assigned to users classes. Each class contains users with similar
characteristics. Formally, our model considers a set U = {uy} of user and a set
UC = {ucz} of users classes. In particular, we assume that:

∀uy ∈ U ∃!ucz ∈ UC | uy ∈ ucz. (6)

A class of user ucz corresponds to the requirements suitable for the users
belonging to the class. According to our model:

ucz = {urz(qdi)}. (7)

We assume that the community is in charge of defining such requirements,
therefore, of identifying the users classes. In this way, users of a class UC have a
sort of template of requirements that can be customized with respect to specific
requirements to produce a specific UR.

Given a class of users, the user class requirements urz represents the quality
of service usually required by the user belonging to that given class. Users take
inspiration from these requirements defined by the community to express their
specific user requirements. User requirements can be more or less selective than
class requirements. Table 3 shows possible user requirements given by a user
for the TrafficMonitoring service. For example, if class requirements for the
availability dimensions are the values included in the range [0.5, 1.0], the user can
be more selective by specifying a quality limit greater than 0.7 or, alternatively,
decrease the relevance of the data quality dimension by accepting a range such
as [0.7, 0.99].

Table 3. User requirements for TrafficMonitoring service.

qd request w

availability [0.5,1.0] 0.4

data encryption [AES-128] 0.025

response time [0.5,1] 0.3

covered area [SouthEast;NorthEast] 0.1

route set [highways;local] 0.15

detail level [jams;detours] 0.025

3 Negotiation model

Before negotiation taking place, we need to state if the offerings satisfy the user
requirements. So, we have to verify the following statement:

∀qdi ∈ QD isec (c(qdi), ur(qdi)) = c(qdi).offerings∩ur(qdi).request 6= ∅. (8)

The service level negotiation occurs within the quality values identified by
isec (c(qdi), ur(qdi)).

Automated negotiation is usually defined by three elements: the negotiation
protocol, the participants decision models [14], and the negotiation objects. We
adopt a very simple negotiation protocol where, the user for each qdi starts
considering the primitive class in qdi.PC which also belongs to the calculated
intersection and which corresponds to the lowest quality. Then, as long as the
budget is not fully exploited, the user will consider the primitive class with higher
quality. In this mechanism, the decision model controls the way in which the
budget is split across the quality dimensions. Finally, negotiation objects refer
to the elements over which negotiation is performed. We argue that only the QoS
dimension associated to a non-constant evaluation function qdi.ef are negotiable.
For dimensions characterized by a constant evaluation function, e.g., covered area
in our running example, we hypothesize that the user’s requirements are non-
negotiable. If, for instance, the user identifies NE and NW as required values
for the covered area dimensions, the user requests can be fulfilled only when the
service provides traffic information on NE and NW . We hypothesize that it is
not possible to negotiate on this kind of dimensions, since the community is not
able to define an evaluation function that orders their values. Therefore, the set
QD is split in two sets: the set NQD of negotiable quality dimensions, and the
set NNQD of non-negotiable quality dimension. More formally:

QD = NQD ∪NNQD, NQD ∩NNQD = ∅
NQD = nqdl l = 1, . . . , L

NNQD = nnqdm m = 1, . . . ,M

For each negotiable quality dimension nqdl, we formally define the negotia-
tion objects as:

negobjl (c(nqdl), ur(nqdl)) = 〈nqdl.name, NPC, ur(nqdl).w〉 l = 1, . . . , L.
(9)

As mentioned above, for each quality dimensions we calculate the intersection
of related capabilities and user requirements. Since qdi is divided by definition
into K primitive classes, then only a subset of them will be included in the
intersection as well. Such a subset is named NPC (negotiation primitive classes)
and defines, for each quality dimension nqdl, the set of negotiation service classes
nscj , j = 1, . . . , J included in the intersection (J ≤ K). The set NPC includes
also the price price(npcj) associated by the service provider to each negotiation
service class:

NPC(nqdl) = {〈npcj , price(npcj)〉} j = 1, . . . , J l = 1, . . . , L. (10)

AES-128 AES-192 AES-256

edata_encryption K=3
pc1={AES-128}
pc2={AES-192}
…

(a) Primitive service classes

edata_encryption
isec={AES-192;AES-256}
npc1={AES-192} J=2
npc2={AES-256}

AES-128 AES-192 AES-256

(b) Negotiation service classes

Fig. 2. Defining negotiation service classes for data encryption.

eavailability K=5
pc1=[0,0.3)
…
pc5=[0.7,1]

1

0.2
0.4

0.6
0.8

0.5 10.3 0.6 0.7

(a) Primitive service classes

eavailability
isec=[0.5,1]
J=3
npc1=[0.5,0.6]
npc2=[0.6,0.7]
npc3=[0.7,1]

1

0.2
0.4

0.6
0.8

0.5 10.3 0.6 0.7

(b) Service classes for negotiation

Fig. 3. Defining negotiation service classes for availability.

The methodology for defining service classes npcj and their price differs with
respect to the nature of the negotiable quality dimension nqdl.

As reported in Section 2, when considering a dimension nqdl that assumes
categorical values, the primitive service classes nqdl.PC coincide with the values
nqdl.V identified by the community. Figure 2 shows the methodology to obtain
negotiation service classes for the data encryption dimension. In this case, the
price associated with a service class npcj is directly obtained from the price
information in the provider capabilities. A negotiation service class npcj includes,
in fact, one single value vh̄ ∈ V , hence:

price(npcj) = c(nqdl).qdprice(nqdl.vh̄). (11)

The definition of negotiation service classes npcj for continuous nqdl de-
rives from the restriction operated on primitive service classes nqdl.PC over
isec (c(nqdl), ur(nqdl)). How to obtain service classes for the availability dimen-
sion is graphically reported in Figure 3. Let us refer to min(npcj) and max(npcj)
as, respectively, the left and right boundaries of the negotiation service class npcj .
The price price(npcj) associated with a service class npcj is the average between
the price associated with its left and right boundaries, that is:

price(npcj) =
c(nqdl).qdprice[min(npcj)]) + c(nqdl).qdprice[max(npcj)])

2
.

(12)

The algorithm adopted to assign a price to a service class can be more general
and it is usually defined by the community.

Once having defined negobjl (c(nqdl), ur(nqdl)), ∀l, l = 1, . . . , L, we de-
fine the basic quality level QLbase of the Web service, which is constituted,
for each negotiable quality dimension, by the lowest quality negotiation service
class negobjl.npc1. Then, it will be:

QLbase = {negobj1.npc1, . . . , negobjL.npc1} . (13)

The objective of the negotiation is to obtain a negotiated quality level QLneg

which improves the quality of the basic level. The user exploits the declared bud-
get ur(nqdl).budget to configure the basic quality level and increase the expected
quality of the Web service. The price P (QLbase) associated to the basic quality
level is:

P (QLbase) =
L∑

l=1

price(npc1(nqdl)). (14)

Let us define Pnn as the price associated with the quality values assumed by
non-negotiable dimensions in isec (c(nnqdm), ur(nnqdm)). In the running exam-
ple, the community may assume that covered area, routes set, and detail level
are non-negotiable (M = 3). Let us consider a user requirement that specifies
highways and local as required values for the routes set dimension. A SLA be-
tween a service provider and the user can be generated only if the provided Web
service gives traffic information on highways and local routes. If we assume that
the user has also required jams and NE for, respectively, detail level and covered
area, it will be:

Pnn = c(nnqd1).qdpricecovered area(NE) + (15)
+ c(nnqd2).qdpricedetail level(jams) +
+ c(nnqd3).qdpriceroutes set(highways) +
+ c(nnqd3).qdpriceroutes set(local).

We can now define the extra budget EB of the user as:

EB = budget− [P (QLbase) + Pnn] . (16)

If EB < 0, then the service is not going to be provisioned because the user
is not able to cover with the budget the total price of the service, that is, the
sum of the price associated with the basic quality level for negotiable dimensions
and the price of non-negotiable dimensions. In case EB = 0, then the service
will be provisioned with the basic quality level QLbase for negotiable quality
dimensions. The negotiation does not take place. The negotiation is executed
only if EB > 0. Two strategies are available to the user to decide how to split
EB across the different negotiable quality dimensions, that we name the vertical
and the horizontal strategies.

01 define ∆EBl = 0, ∀l //Fraction of EB allocated to the

//improvement of nqdl

02 define ∆EB = 0 //Exploited fraction of the extra budget

03 while(END==FALSE)

04 select l:max(nqdl.w) = wl //select the current nqd with

//highest priority

05 wl = wl − 0.01 //decrease the priority of the selected nqd
06 ∆EBl = price(npcj+1)− price(npcj) //update EB allocation

//on nqdl

07 npcj(nqdl) = npcj+1(nqdl) //update the nqdl level

08 ∆EB = ∆EB + ∆EBl //update the EB allocation

09 if (∆EB > EB) //Cannot price increase be covered by EB?

10 npcj(nqdl) = npcj−1(nqdl) //restore old nqdl value

11 ∆EB = ∆EB −∆EBl //restore EB allocation

12 END=TRUE //Exit condition, negotiation stops

13 endif

14 if (wl == 0) //Exit condition, negotiation stops

15 END=TRUE

16 endwhile

Fig. 4. Horizontal negotiation strategy.

When adopting the vertical strategy, the user has the objective to maximize
the quality associated to the highest priority dimension nqdl̄. When the quality
of this dimension is maximized, that is, when the remaining extra budget exceeds
the price of the negotiation service class npcJ(nqdl̄), then the algorithm switches
to the maximization of the quality of the second highest priority dimension. The
horizontal strategy is adopted when the user wants to split the extra budget
on the negotiable quality dimensions proportionally to the priorities ur(nqdl).w,
∀l ∈ [1, . . . , L]. The horizontal and vertical strategies follow respectively, the
algorithms reported in Figure 4 and 5.

Let us refer to P as the total price of a service after quality negotiation:

P = P (QLneg) + Pnn. (17)

The result of the negotiation is a service level agreement SLA, generated
on-the-fly for Web service, that has the following structure:

SLA = 〈QLneg, P, isec (c(nnqdm).ur(nnqdm))〉 , (18)

where QLneg reports the service class for negotiable quality dimensions obtained
from the execution of negotiation, P is the total price associated with the Web
service with negotiated quality. Last term refers to the values of the non nego-
tiable quality dimensions.

01 define ∆EBl = 0, ∀l //Fraction of EB allocated to the

//improvement of qdi

02 define ∆EB = 0 //Exploited fraction of the extra budget

03 while(END==FALSE)

04 select l:max(nqdl.w) = wl //select the current nqd with highest

//priority

05 wl = wl − 0.01 //decrease the priority of the selected nqd
06 STOP=FALSE //starting configuration of nqdl

07 while (STOP==FALSE)

08 ∆EBl = price(npcj+1)− price(npcj) //update EB allocation on

//nqdl

09 npcj(nqdl) = npcj+1(nqdl) //update the nqdl value

10 ∆EB = ∆EB + ∆EBl //update the EB allocation

11 if (∆EB > EB) //Cannot price increase be covered by EB?

12 npcj(nqdl) = npcj−1(nqdl) //restore old nqdl value

13 ∆EB = ∆EB −∆EBl //restore EB allocation

14 STOP=TRUE //end nqdl negotiation

15 END=TRUE //exit condition, negotiation stops

16 endif

17 if((j = J)OR(wl == 0))
18 STOP=TRUE //end nqdl configuration

18 endwhile

19 endwhile

Fig. 5. Vertical negotiation strategy.

4 Related work

This paper presents a model to support the automatic generation of a service
level agreement by considering user requirements and provider capabilities. To
mediate between these two standpoints, we introduce the community as the
actor able to provide a shared knowledge about the quality of a service in a
specific application domain. The community defines which relevant aspects of a
service can be used as search discriminants in service discovery. In the paper, the
community organizes dimensions by using a tree-based structure. This approach
for defining service quality has been inspired by [15] and [16], which recognize the
correlation among several dimensions. In particular, [15] also refers dimensions
to different layers (i.e. system level, resource level, and application level).

The set of dimensions identified by the community is also used as a guideline
by the providers to describe the capabilities of the offered service. In fact, a
complete service description is an important requirement for users who aim at
searching the most suitable Web service. Besides the functional description, for
which WSDL represents the most adopted specification, non functional specifi-
cations have to be modeled. In [17] a complete comparison of the current quality

description languages is presented. Among all the identified contributions, for
our work it is important to consider proposed languages for offers and contracts
and languages for policies. As regards the former category, WSOL [10], WSLA
[18], and WS-Agreement [19] provide some description models that our work
can exploit to express quality dimensions. These contributions are particularly
relevant, since they also address the definition and monitoring of quality lev-
els. WSOL is suitable for the definition of quality dimensions, their metrics and
quality constraints. The language does not formalize the contract terms between
user and provider defining service levels but it contains constructs to define sim-
ple quality constraints on each quality dimension. A support for the definition
and monitoring of Service Level Agreements is, instead, provided by the WSLA
language. It allows providers to define quality dimensions and to describe eval-
uation functions. Furthermore, it provides monitoring of the parameters during
operations and invocation of recovery actions when contract violations occur.
Similarly, WS-Agreement provides constructs for advertising the capabilities of
providers and for creating agreements based on creational offers, and for moni-
toring agreement compliance at runtime. The latter category includes WS-Policy
[11] that can be adopted as a language for defining capabilities and requirements.
WS-Policy definitions are independent of any specific quality descriptions. Using
this language, users may describe services by using self-defined quality attributes.

Once that the service capabilities description is provided, the selection of
the most suitable service is enabled by the definition of the user requirements.
In this area, notations and languages to express users requirements have been
defined in NoFun [20] and QML [21]. There are also contributions in which
quality requirements are expressed by means of standard sentences or linguistic
patterns in natural language [22].

In this paper, the automatic generation of a service level agreement is en-
abled by the use of negotiation mechanisms. In the literature, the only examples
that propose policies for automated quality negotiation of Web services can be
found in [23, 24]. In general, research on SLA management has been carried out
in the past couple of years and it has been mainly focused on the SLA specifica-
tion and on the definition of languages for SLA creation, operation, monitoring,
and termination. Examples of SLA management frameworks are WS-agreement
[19], WS-negotiation [25], and the Service Negotiation and Acquisition Proto-
col (SNAP) [26]. However, while these standards are still evolving, they present
some limitations. Generally, frameworks for SLA management only define the
format and types of messages that can be used in the negotiation, but they do
not provide the strategies through which negotiation is performed. In this paper,
besides a characterization of negotiation messages built on the underlying Web
service quality model, we also define the users’ strategies to be adopted in the
negotiation.

5 Conclusions and future work

This paper proposed a framework for the on-the-fly generation of Web service
SLAs. The contribution of the paper is twofold. First, we introduced a quality
model for Web services that is exploited by providers and users to define, re-
spectively, their capabilities and requirements. Secondly, we provided users with
a mechanism to negotiate among the set of service classes at the intersection
between capabilities and requirements.

From the quality model definition perspective, future work should deal with
an extended multi-level hierarchical model that considers composite dimensions,
such as, for instance, security defined as a combination of data encryption, au-
thentication, non-repudiation, and data integrity. Concerning negotiation, this
paper focused on SLA generation involving only one provider and one user. Fu-
ture work should also investigate how negotiation of quality aspects can be used
to select a service among a set of functionally equivalent services. In this way,
we will be able to add on-the-fly SLA generation capabilities to the common
frameworks dealing with service discovery.

Acknowledgment

The work has been partially supported by the Italian MIUR-FIRB TEKNE
Project and by the European WS-DIAMOND Project.

References

1. Papazoglou, M.P., Georgakopolous, G.: Service Oriented Computing: Introduction.
Communications of the ACM 46(10) (2003) 1–5

2. Bianchini, D., De Antonellis, V., Pernici, B., Plebani, P.: Ontology-based method-
ology for e-service discovery. Information Systems 31(4-5) (2006) 361–380

3. Bernstein, A., Klein, M.: Towards High-Precision service retrieval. In: Proc. Int.
Semantic Web Conference, ISWC’02. (2002)

4. Stroulia, E., Wang, Y.: Structural and semantic matching for assessing web-service
similarity. Int. J. Cooperative Inf. Syst. 14(4) (2005) 407–438

5. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service
level agreements for Web services. Journal of Network and Systems Management
11(1) (2003) 57–81

6. Ran, S.: A model for Web services discovery with QoS. ACM SIGCOM Exchange
4(1) (2003) 1–10

7. Mani, A., Nagarajan, A.: Understanding quality of service for Web services.
Technical report, IBM, http://www-128.ibm.com/developerworks/library/ws-
quality.html (2002)

8. Fugini, M., Plebani, P., Ramoni, F.: A user driven policy selection model. In:
ICSOC ’06: Proceedings of the 4th international conference on Service oriented
computing. To appear. (2006)

9. Marchetti, C., Pernici, B., Plebani, P.: A quality model for multichannel adaptive
information. In: WWW Alt. ’04: Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, New York, NY, USA, ACM
Press (2004) 48–54

10. Tosic, V., Ma, W., Pagurek, B., Esfandiari, B.: Web Service Offerings Infrastruc-
ture (WSOI) - a management infrastructure for XML Web services. In: Network
Operations and Management Symposium, 2004. NOMS 2004. IEEE/IFIP. Vol-
ume 1. (2004) 817–830

11. Vedamuthu, A., Orchard, D., Hondo, M., Boubez, T., Yendluri, P.:
Web Services Policy 1.5 - Primer. http://www.w3.org/TR/2006/

WD-ws-policy-primer-20061018 (2006)
12. Saaty, T.L.: The Analytic Hierarchy Process. Mc Graw Hill, New York (1980)
13. Olson, J.: Data Quality: The Accuracy Dimension. Morgan Kaufmann, San Fran-

cisco (2002)
14. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge, M., Sierra, C.:

Automated negotiation: Prospects, methods and challenges. Group Decision and
Negotiation 10(2) (2001) 199–215

15. Sabata, B., Chatterjee, S., Davis, M., Sydir, J., Lawrence, T.: Taxonomy for
QoS Specifications. In: Object-Oriented Real-Time Dependable Systems, 1997.
Proceedings., Third International Workshop on. (1997) 100–107

16. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic (2000)

17. Ruckert, J., Paech, B.: Web Service Quality Descriptions for Web Service con-
sumers. In: CONQUEST2006. Proceedings. (2006)

18. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Technical Report RC22456(W0205-171), IBM
Research Division, T.J. Watson Research Center (2002)

19. GRAAP Working Group: WS-Agreement Framework. https://forge.gridforum.
org/projects/graap-wg (2003)

20. Franch, X.: Systematic formulation of non-functional characteristics of software.
In: 3rd International Conference on Requirements Engineering (ICRE ’98). (1998)
174–181

21. Frølund, S., Koistinen, J.: Quality-of-service specification in distributed object
systems. Distributed Systems Engineering Journal 5(4) (1998)

22. Duran, A., Bernardez, B., Toro, M., Corchuelo, E., Ruiz, A., Perez, J.: Expressing
customer requirements using natural language requirements templates and pat-
terns. In: Proceedings of the third Conference on Circuits, Systems, Communica-
tions and Computers (CSCC ’99). (1999)

23. Lamparter, S., Agarwal, S.: Specification of policies for Web service negotiations.
In: Proc. Semantic Web and Policy Workshop. (2005)

24. Gimpel, H., Ludwig, H., Dan, A., Kearney, R.: PANDA: Specifying policies for au-
tomated negotiations of service contracts. In: Proc. 1st Int. Conf. Service Oriented
Computing, ICSOC’03. (2003) 287–302

25. Rahwan, I., Kowalczyk, R., Pham, H.H.: Intelligent agents for automated one-
to-many e-commerce negotiation. In: Computer Science 2002, Twenty-Fifth Aus-
tralasian Computer Science Conference (ACSC2002). (2002) 197–203

26. Czajkowski, K., Foster, I.T., Kesselman, C., Sander, V., Tuecke, S.: Snap: A proto-
col for negotiating service level agreements and coordinating resource management
in distributed systems. In: Job Scheduling Strategies for Parallel Processing, 8th
International Workshop, JSSPP 2002. (2002) 153–183

