
A semantic based framework for supporting negotiation in Service Oriented
Architectures

Marco Comuzzi
Dept. of Computing

City University London
Northampton Square, London EC1V 0HB, UK

sbbd286@soi.city.ac.uk

Kyriakos Kritikos and Pierluigi Plebani
Dip. Elettronica ed Informazione

Politecnico di Milano
Via Ponzio 34/5 - 20133 Milano - Italy

{kritikos,plebani}@elet.polimi.it

Abstract—Negotiation is required before invoking a service
in order to identify how the invocation must occur in terms of
functional and non-functional criteria. This process is possible
when all the involved parties agree on the same negotiation
protocol (e.g., bilateral negotiations). Considering a Service
Oriented Architecture (SOA), this negotiation protocol cannot
be predefined, but it must be selected by considering the
negotiation capabilities of the involved services.

In this work, we propose a semantic-based framework for
supporting the negotiation in SOA. Specifically, the frame-
work allows to express the negotiation capabilities of service
requesters and providers and proposes a mechanism for dis-
covering the negotiation protocols that can be enacted when
a negotiation is required. To improve the flexibility of the
framework, the concept of delegation is introduced to deal
with the situation in which a party, that is not able to support
the negotiation protocol, wants to participate in a negotiation.
In this case, the negotiation can be fully or partially delegated
to one or more other parties that, instead, are able to support
the negotiation protocol.

Keywords-QoS Negotiation; Service Oriented Architectures;
Semantic Web;

I. INTRODUCTION

Service discovery is one of the fundamental activities in
Service Oriented Architectures (SOA). Based on a set of
functional and non-functional requirements, service discov-
ery produces a set of available services. In the literature [1],
several work deal with this issue proposing matchmaking
algorithms that compare the requirements with the offerings.
Different matchmakers are proposed accordingly to the
different languages that can be used to describe a service:
e.g., WSDL/SAWSDL, OWL-S, for the functional aspects;
WS-Policy, OWL-Q [2] for the non functional aspects.

Considering the extended SOA [3], the matchmaking
activity can be followed by a negotiation activity that allows
to identify the Service Level Agreement (SLA) as a compo-
sition of Service Level Objectives (SLOs) (i.e service quality
bounds) of the delivered service, the penalties enforced when
they are violated, the measurement and evaluation process of
the SLOs, the price to be payed, and other important terms.

Focusing on the negotiation, current solutions [4] start
from the assumption that all the negotiating parties agree and
have the capabilities to support the same negotiation proto-
col. Althought this assumption is mandatory in a negotiation
system, in SOA service requesters and service providers
might not know each other in advance. This means that it
is quite probable that negotiation cannot be enacted, since
a common supported negotiation protocol is not easy to be
found.

The goal of this work is to overcome to this limitation
by proposing a semantic-based framework for supporting
the negotiation in SOA. The framework assumes that all the
parties specify their requirements and offers according to
the same model, and a matchmaking algorithm to compare
them exists [5], [6]. Our framework completes the picture by
proposing a semantic-based model for allowing the partic-
ipants to express their negotiation capabilities. When a ne-
gotiation is required, the framework can be used to identify
which are the possible negotiation protocols by comparing
the negotiation capabilities exposed by the participants. As a
way to improve the flexibility of the solution accordingly to
a SOA, the framework includes the concept of negotiation
by delegation. When a negotiation protocol supported by
all the participant does not exist, then we assume that a
participant can fully of partially delegate the negotiation to
someone else that supports other negotiation protocols that
make possible to find a common protocol.

The reasoning required during the negotiation protocol
matchmaking relies on an ontology obtained extending the
one introduced in our previous work [7]. Such an ontology
includes the description of the negotiation capabilities of the
participants, automates the quality specification alignment
and matchmaking processes, and assists the actual negotia-
tion process through reasoning with rules.

The paper is structured as follows. In Section II, we
clearly define the scenario in which the negotiation frame-
work operates. Section III introduces all the elements com-
posing the framework and gives a formal definition of
them by specifying an ontology. By using an example,
Section IV introduces the rules that drive the discovery of



Service Selection

Negotiation
enactment

Service Execution

Service providersService requesters

Service Discovery

Negotiation
protocol 
selection

Negotiation
protocol 

discovery

negotiate negotiate

invoke

ex
ec

ute

Service broker

support

fin
d

publish

set of candidate 
services

selected
service

Actor Activity

step data

Legend

Figure 1. Negotiation-enabled SOA.

the negotiation protocols. Section V discusses some of the
related work and, finally, Section VI concludes the paper
and outlines possible future work.

II. SCENARIO

Before discussing in depth the negotiation framework that
we are proposing in this paper, it is worth noting to draw the
overall picture (see Figure 1) and to clearly identify when
and how the negotiation is involved in a SOA. Here, three
main players are involved: service requesters (or service
users), the service providers, and the service broker. As a
very first step, we assume that service providers make their
service publicly available using the functionalities offered by
the service broker, for instance, by means of a registry. On
the other side, the service broker supports the service users
during the service discovery activity to retrieve the published
services that satisfy the user requirements. As a result a
set of candidate services are retrieved and the requester is
in charge of selecting the best one (i.e., service selection
activity). Once this service has been identified, the service
execution can commence.

This process requires that all the providers and requesters
are described in terms of functional and non-functional capa-
bilities. These capabilities are publicly available to everyone
using standard documents like WSDL or WS-Policy [8]
attached to the related service descriptions that we assume
are already made available by the providers and requesters.
These documents feed the service discovery and service
selection activities in order to identify the service to be
executed according to one of the several approaches now
available in the literature [1].

If the capability documents include information about the
negotiation protocols that a provider or a requester are able
to support then the service discovery and service selection
activities include three steps specifically devoted to the
analysis of the negotiation protocols: negotiation protocol

discovery, negotiation protocol selection, and the negotiation
enactment. The first step is in charge of identifying the
set of negotiation protocols that are supported by all the
service providers and requester involved in a given appli-
cation according to the published capability documents. If
there is not any negotiation protocol in common between
a service provider and the requester, the negotiation cannot
occur. The second and third phase belong to the service
selection activity: the negotiation protocol selection is in
charge of selecting the best negotiation protocol among
the ones previously discovered, the negotiation enactment
executes the selected negotiation protocol to define a SLA
between the service provider and the service requester. If an
agreement is made, then the service is executed.

Considering this scenario, the framework proposed in this
paper deals with the negotiation protocol discovery. The
negotiation protocol selection will be a topic of future work,
whereas the negotiation enactment has been extensively
covered in the literature [4].

As discussed in the literature, several protocols are avail-
able to perform a negotiation between parties. On first ap-
proximation, we distinguish between bilateral negotiations
and auctions as ways to carry out a negotiation protocol. In
the former case, we have only two parties involved; on the
latter case, we have an auctioner and a set of one or more
participants. To make the negotiation feasible, one of the
constraints requires that all the involved parties agree on the
same negotiation protocol: i.e., they agree on the sequence of
actions to be performed in order to conclude the negotiation
process. For instance, in case of bilateral negotiation, an
offer is initially generated by a party. Then, this offer can
be accepted as is by the other party or a counteroffer might
be generated and evaluated by the first party that behaves
in the same way. The process stops when both parties agree
on a given offer that satisfies both of them. In this case, in
order to make possible the negotiation, the first party must be
able to perform three activities: “generate the initial offer”,
“generate the counteroffer”, “evaluate offer”. On the other
hand, the other party must be capable for performing at least
two activities: “generate the counteroffer”, “evaluate offer”.
Similarly, if we consider auctions, auctioner and participants
must be able to perform particular actions considering that
the participants are competing each other.

It is worth noting that we no longer talk about providers
and requesters during the negotiation, but we talk about
parties, participants, and auctioners according to a given
negotiation protocol. Indeed, considering for instance an
auction, a requester could be auctioner during an execution
of the auction, whereas it could hold the role of participant
in some other executions. Let us consider the case of a
user that requires the functionality of a certain service to
complete an application package that he or she would like
to sell to other potential consumers. In a first phase, the user
takes the role of service requester and negotiates with other



service providers in order to obtain the missing functionality
for his or her application package. In a second phase, the
same user takes the role of a service provider, looking for
potential service requesters for its application package.

The bargain power owned by the requester and the
provider is one of the most important criteria that can drive
the assignment of the role during the negotiation protocol
Assuming that we are able to know this bargain power, in
case of bilateral negotiation who has the main power will
start the negotiation. Considering the auction, the scenario is
a little bit different. After the service discovery, the requester
retrieves a set of functionally equivalent services. If the
requester has the main bargain power it means that the
requester holds the role of the auctioner and the services
compete to make a deal with it. If the requester has less
bargain power with one of retrieved service, then the situ-
ation is the opposite and this requester belongs to a set of
requesters that compete for the right to use a given service.

III. NEGOTIATION FRAMEWORK

In order to better clarify our definitions of negotiation
capabilities, we rely on a classification of elements in a
generic negotiation that is well understood in the agent
computing literature [4]. Specifically, a generic negotiation
is constituted by (i) a Negotiation Protocol, which states
the admissible actions that a participant can endorse and the
valid states for a negotiation, (ii) Negotiation Objects, i.e.
what is under negotiation, and (iii) Decision Models, i.e. the
set of rules or reasoning models adopted by a participant to
evaluate and generate offers.

The negotiation capabilities in our negotiation framework
are defined in terms of the ontology that extends OWL-Q [2],
a semantic quality-based service description language. In
this work, the ontology is limited to the concepts required for
the discovery of a Negotiation Protocol compatible with the
negotiation capabilities defined by the potential participants.
Our focus is therefore on capturing in an ontology actors,
roles, and possible actions that an actor can perform or that
a role may require in a given negotiation protocol as shown
in Figure 2. Apart from the usual advantages of the use of
an ontology, another advantage is that term matching rules
can be created in cases where domain experts differently
interpret the ontology’s terms.

In our previous work [7], we focused on the description
of negotiation objects and the negotiators’ decision models,
by extending OWL-Q to automate the quality specification
alignment and matchmaking processes and assist the actual
negotiation process through reasoning with rules.

A. Negotiation Actors and Roles

Our framework makes a clear distinction between ne-
gotiation actors and negotiation roles. The former can be
users or agents. Users delegate agents (see object property
actsFor) to take a specific role in a negotiation and act on

behalf of them. The latter can be service providers or service
requesters or brokers. Besides expressing capabilities for
participating in a negotiation protocol, service providers and
requesters have the capability of generating and evaluating
offers within a negotiation. Conversely, brokers only expose
capabilities that do not involve the generation or evaluation
of negotiation offers.

By introducing a distinction between actors and roles,
our model enables a negotiation actor to take different
negotiation roles in different negotiations as discussed at
the end of the previous section. In the ontology model,
negotiation actors are associated with roles through the
object property takesRole.

B. Negotiation Protocols

Concerning the description of the negotiation protocol,
the ontology model has an entity named NegotiationProtocol
that represents all possible negotiation protocols as, for in-
stance, bilateral negotiations, auctions, and so on. A specific
negotiation protocol can be compatible with another one (i.e
it can be substituted by it) and this fact is captured with the
object property compatible.

Negotiation Protocols and Actors are linked by the con-
cept of RoleSkeletons. Role skeletons are specific roles em-
bodied in a negotiation protocol by an actor. A negotiation
protocol may have a specific set of valid role skeletons (see
the object property skeleton) that the actors participating in
it can support. At the current stage, our ontology includes
only RoleSkeletons required by the bilateral negotiation and
auction protocols. In a bilateral negotiation, we consider
the Initiator and Participant role skeletons. The former
is embodied by the actor that makes the first offer in
the negotiation, whereas the latter by the second actor
involved in the negotiation. Besides the Participant, the
auction protocol involves also an Auctioneer, i.e. the actor
in charge of collecting offers, making a decision on the
auction termination, and communicating the outcome to the
participants.

C. Actions

The ontology model supporting our framework relates
both negotiation actors and role skeletons with a set of
actions (i.e., an ActionList) through the object properties
ableToPerform and performs, respectively.

The identification of candidate actions in our ontology
takes inspiration from the large body of literature on con-
figurable platforms for supporting generic negotiations in
agent-based computing literature [9], [10]. We distinguish
among actions that can be performed during the engagement
of a negotiation (i.e., engagement actions) and actions that
belong to the actual negotiation protocol (i.e., negotiation
protocol actions). The engagement phase represents the
initial setup of the negotiation, where an actor can delegate
part of of the actions required in a negotiation to other actors.



NegotiationDelegation

Actual
Delegation

Possible
Delegation

Legend

object property

is-a

negotiation Negotiation
protocol

candidate
protocol

Bilateral
negotiation

Auction
Single-text 
mediated

neg.

Actor

participatesln
can

Dele
ga

te

de
leg

ate
e

User

Agent

actsFor

canCooperateWith

Role
Skeleton

skeleton

Initiator

Participant

Auctioneer

supportSkel

compatibleProtocol

Cooperation

Actual
Cooperation

Possible
Cooperation

inCooperation

Actor
List

cooperators

List

Action
List

actionSupported

ableToPerform

m
em

ber

Service
Provider

Service
Requester

Role

Broker

hasRole performs

Action

compatibleAction

member

Engagement
Action

Protocol
Action

setDecision
Model

getDecision
Model

setVisibility
Rule

setTermination
Rule

create
Offer

accept
Offer

collect
Offer

sendOffer

getVisibility
Rule

setAgreeement
Formation

Rule
getAgreeement

Formation
Rule getOutcome

setOutcome

receiveOffer

create
CounterOffer

getTermination
Rule

Figure 2. OWL-Q based ontology for negotiation capabilities.

Engagement Actions.
An engagement action represents a capability used by an

actor to delegate some aspects of a negotiation to another
actor. Besides the decision model, among other aspects that
can be delegated, we consider the Visibility, Termination,
and Agreement Formation rules [10].

In a multiparty negotiation, a visibility rule specifies the
conditions under which an offer can be made visible, i.e.
communicated, to the other participants of a negotiation. In
an auction, for instance, an offer can be visible to other
participants only when it exceeds the reservation value set by
the auctioneer, which may not be known to the participants.
In a generic multiparty negotiation, only the latest offer
made by a participant may be visible, i.e., when an offer
is submitted by agent A, all the previous offers made by A
should no longer be visible to other involved agents.

A termination rule defines the conditions under which a
negotiation terminates and, therefore, the outcome should
be sent to the participants. A simple termination rule in a
bilateral negotiation may be a timeout, i.e. the negotiation
terminates, without an agreement, when a pre-specified
deadline expires (or when an agreement has been reached
before the deadline).

An agreement formation rule specifies the conditions un-
der which an agreement is reached among the participants. In
a bilateral negotiation, the agreement is formed when a party
accepts an offer made by the counterpart. More complex
rules can be defined for complex multiparty negotiation
protocols. In double auctions, for instance, agreement for-
mation rules that satisfy specific equilibrium and incentive-
compatibility properties are continuously object of research
studies [11].

Visibility, Termination, and Agreement formation rules,
or decision models for generating offers, can be delegated
by an actor (set actions) to another actor, which is able to
receive a rule through the correspondent get action.

Negotiation Protocol Actions.
The set of negotiation actions considered at the current

stage in our framework are the basic actions that can be
used to execute a bilateral iterated negotiation protocol and
a generic auction. These involve actions for creating an offer
from scratch, i.e. for starting a negotiation or bidding in
an auction (createOffer), generating a counteroffer, given an
offer submitted by a counterpart (createCounterOffer), and
accepting an offer (acceptOffer).

Besides these, an actor may expose an action to receive
the outcome of a negotiation when it has terminated (getOut-
come). From the broker perspective, we include actions for
collecting offers from one or a set of actors (collectOffers)
and for communicating the outcome of a negotiation when
it has terminated (setOutcome). Finally, the actions send-
Offer and receiveOffer are required for delegating part of
the negotiation protocol execution to a broker. It must be
noted that specific actions appearing in negotiations, such
as createOffer, are sub-classes of the Action class. In this
way, specific implementations of the same action will belong
to the class of this action so it will be easier to perform
matchmaking between them.

In our ontology model, negotiation actors publish the ac-
tions they are able to perform when involved in negotiations.
Each role skeleton required by a specific negotiation protocol
is associated with a set of actions as well. Such set contains
the actions that a role skeleton should perform during the
enactment of the protocol and, therefore, the actions that are



required by an actor supporting the role skeleton. The goal of
our negotiation protocol discovery is to match the actions an
actor can take with the actions of the role skeleton it wants
to support in a specific negotiation protocol and, thus, to
infer whether the actor can actually support the negotiation
protocol or not.

The object property supportsSkel between the Actor and
RoleSkeleton classes captures the existence of match be-
tween actors and role skeletons action lists. This property has
two sub-properties, namely fSupportsSkel and delegatesSkel,
which refer to two different cases of match. The former
property is used to capture the fact that an Actor can fully
support a role skeleton, i.e. its action lists contains the same
set of actions required by the correspondent role skeleton.
The latter property is used to capture the fact that a User
has an agent acting for him that can fully support a specific
role skeleton.

D. Delegation

A negotiation actor may extend its negotiation capabilities
by cooperating with other actors. According to our model,
this cooperation should be able to be performed in both
ways and irrespectively of the negotiation protocol. So
both cooperating actors should be able to perform any
engagement action. This relationship between negotiation
actors is captured through the symmetric object property
cooperatesWith. An actor may need to match a role skeleton,
but it may also not support all the actions required by
such a role skeleton. In this case, the actor can delegate
to a cooperating actor all or a subset of the actions of a
role skeleton. When the whole set of actions required by a
role skeleton is delegated by an actor to another one, we
have the case of (full) Delegation. The Delegation class is
separated into two sub-classes, i.e. PossibleDelegation and
ActualDelegation, and it is related to the delegating and
the delegated actors through the properties canDelegate and
delegatee, respectively, and with the supported role skeleton
through the property skel.

The PossibleDelegation class captures delegations that
are possible to happen but their “realization” depends on
three possible facts: a) a negotiation selects the negotiation
protocol of the role skeleton; b) the delegator cannot support
or delegate any other role skeleton; c) the delegatee does not
participate in the same negotiation with the delegator and
the delegator cannot fully support the role skeleton. If these
three facts happen, then a possible delegation becomes an
ActualDelegation. An ActualDelegation is connected with
its selecting Negotiation with the property negotiation.

When an actor delegates its unsupported actions to one
or more cooperating actors, then we have the case of partial
delegation. This case is captured by the class Cooperation.
This class is separated into two sub-classes in the same
way as it is done for the Delegation class. Moreover, this
class is connected with the delegating actor and all cooper-

ating actors (including the delegator) through the properties
canCooperate and cooperators, respectively, and with the
supported role skeleton through the property ofSkeleton.
The PossibleCooperation class captures those cooperations
between actors that are likely to happen in order to support
a role skeleton, while the ActualCooperation class captures
those cooperations that are going to take place with respect
to a negotiation. So the ActualCooperation class is con-
nected with a negotiation through the property inNegotiation.

Finally, our model captures all appropriate information
about a negotiation through the class Negotiation. A Ne-
gotiation is connected with its participating actors through
the property participatesIn. Moreover, a negotiation is con-
nected with all the protocols that can be supported by
its actors with the object property candidateProtocols. In
addition, all the roles that participants have in a negotiation
are captured through the object property ofNegotiation.

IV. SEMANTIC MODEL

The ontology in our framework aims at supporting the
negotiation protocol discovery phase, i.e. finding a feasi-
ble protocol among a set of actors, given the negotiation
capabilities exposed by these actors. To this end, we define
specific (helper) relationships (i.e. object properties) between
entities in our ontology and a set of rules to enable reasoning
about the facts we want to infer. In the remainder of this
section, we first discuss the relationships and rules added to
support negotiation protocol discovery. We then provide a
complete example illustrating the reasoning capabilities of
our framework.

The first relationship added in the ontology model is pSup-
portsSkel, to describe the fact that a specific actor partially
supports a specific role skeleton. Other two additions to the
model are the pSupportSkel and supportSkel relationships,
which capture the fact that a specific set of actors (ActorList)
can partially or fully support a role skeleton, respectively
(without considering the fact if they can cooperate or not).
Another relationship added is the actionsSupported, to cap-
ture the fact that a set of actors can support a specific set
of actions (without knowing if they can cooperate or not).
Finally, we added the symmetric and transitive relationship
between actors canCooperateWith, to capture the fact that
two actors can cooperate either immediately or through other
agents. For this reason, we made this new property a super-
property of the cooperatesWith property.

The negotiation protocol discovery phase is enabled by a
new set of rules added to the ontology model. These rules
in First Order Logic (FOL) form can be seen in Figure 3.

Rules (1)–(5) reveal the logic for inferring the candidate
protocols that can be used in a specific negotiation. Rule
(1) states that an actor fully supports a role skeleton when
he is able to perform all the actions that the role skeleton
should perform. Rule (2) states that an actor delegates a role
skeleton when he has an agent acting for him and this agent



1. fSupportsSkel(A, S) ← ableToPerform(A, L1) ∧ performs(S, L2) ∧ subList(L2, L1)
2. delegatesSkel(A, S) ← actsFor(A2, A) ∧ fSupportsSkel(A2, S)
3. PossibleDelegation(D) ∧ canDelegate(A, D) ∧ delegatee(D,A2) ∧ skel(D,S) ←
← cooperatesWith(A, A2) ∧ supportsSkel(A2, S)

4. PossibleCooperation(C) ∧ inCooperation(A, C) ∧ cooperators(C, L) ∧ ofSkeleton(C, S) ←
← supportSkel(L, S) ∧ contains(L, A) ∧ ∀X(member(L, X) ∧ differentFrom(X, A) →
→ canCooperateWith(A, X))

5. candidateProtocol(N, P ) ← newList(LS) ∧ ∀R(ofNegotiation(R,N) ∧ ∃S(skeleton(P, S) ∧
¬member(LS, S) ∧ ∀X(participatesIn(X, N) ∧ takesRole(X, R) ∧ (supports(X,S) ∨ (
canDelegate(X, D) ∧ delegatee(D,X2) ∧ skel(D,S) ∧ ¬participatesIn(X2, N)) ∨ (
inCooperation(X, C) ∧ cooperators(C, L) ∧ ofSkeleton(C, S) ∧ ¬∃X2(member(L, X) ∧
differentFrom(X2, X) ∧ participatesIn(X2, N)))) ∧ listAdd(LS, S))))
∧∀S(skeleton(P, S) ∧member(LS, S))

6. pSupportsSkel(A, S) ← ableToPerform(A, L1) ∧ performs(S, L2) ∧
∧listIntersection(L3, L1, L2) ∧ strictlySubList(L3, L2)

7. pSupportSkel(AL, S) ∧ actionsSupported(AL, L) ← pSupportsSkel(A, S) ∧
∧ableToPerform(A, L) ∧ listAdd(AL, A)

8. pSupportSkel(AL2, S) ∧ actionsSupported(AL2, L4) ← pSupportSkel(AL1, S) ∧
∧pSupportsSkel(A, S) ∧ ableToPerform(A, L1) ∧ actionsSupported(AL1, L3) ∧
∧listConcatenation(L4, L1, L3) ∧ performs(S, L2) ∧ listIntersection(L5, L4, L2) ∧
∧strictlySubList(L5, L2) ∧ newList(AL2, AL1, A)

9. supportSkel(AL2, S) ∧ actionsSupported(AL2, L4) ← pSupportSkel(AL1, S) ∧
∧(A, S) ∧ ableToPerform(A, L1) ∧ actionsSupported(AL1, L3) ∧
∧listConcatenation(L4, L1, L3) ∧ performs(S, L2) ∧ subList(L2, L4) ∧ newList(AL2, AL1, A)

Figure 3. Rules for Negotiation Protocol Discovery.

fully supports the role skeleton. Rule (3) states that there
is a possible delegation D for a role skeleton S, where the
delegator is actor A and the delegatee is actor A2, when actor
A cooperates with actor A2 and the latter actor supports
the role skeleton. Rule (4) states that there is a possible
cooperation C between a set of actors L for a role skeleton
S, where the actor A is involved in it, when the set of actors
L support the role skeleton S and all actors X of L that are
different from A can cooperate with A.

Candidate protocols for negotiation are inferred through
rule (5), which states that a protocol P is a candidate for
negotiation N , when there is a list of role skeletons LS,
filled in with a role skeleton S required by P , which is
supported by a role R, and the list LS eventually contains
all the possible role skeletons S required by protocol P .
A role of a negotiation supports a role skeleton when
all of the participants X that take part in the negotiation
with this role can support, in any possible way, this role
skeleton. In other words, the goal of rule (5) is threefold:
a) to assign to the participants taking the same role in the
negotiation the same role skeleton; b) to assign different role
skeletons to participants of different roles; c) to assign all
role skeletons of a negotiation protocol. Thus, when this goal
is satisfied, the negotiation protocol can be used for enacting
the negotiation.

There are three different cases in which an actor X can
support a role skeleton S of protocol P . In the first case, the
actor X directly supports (by himself or through his or her
agent) the role skeleton S. In the second case, the actor X
delegates all the actions of role skeleton S to a cooperating
actor X2 (the delegatee) through a possible delegation D.
This can happen only if the actor X2 does not participate
in the same negotiation where X participates. In the third

case, the actor X participates in a possible cooperation C
that supports role skeleton S. Also in this case, all the
cooperating actors except X must not participate in the
negotiation N where X participates. It should be noted that
although rule (5) is very general, it can be used only in
cases where the role skeletons in a negotiation protocol are
mutually exclusive, that is, a role skeleton may not substitute
another role skeleton in a negotiation and a participant in
a negotiation, possibily through delegation/cooperation, can
support only a single role skeleton in a given negotiation.
Future work will concern the addition of further set of
rules to support different types of negotiation protocols with
different requirements for their roles skeletons.

Rules (6)–(9) support the inference of property
supportSkel for rule (4). Rule (6) states that an actor
partially supports a role skeleton when the actions he or she
is able to perform do not include all the actions required
by role skeleton. Rule (7) states that an actor list partially
supports a role skeleton, with a set of actions L, when
it contains only one actor (that is able to perform the L
actions in the action list) and this actor partially supports
the role skeleton. Rule (8) states that an actor list AL2

partially supports a role skeleton S and supports a set
of actions L4, when it is produced by an actor list AL1

that partially supports S and an actor A that also partially
supports S and the union L4 of the action sets that AL1 and
A support does not include all the actions that S requires.
Finally, rule (9) states that an actor list AL2 supports a
role skeleton S and supports a set of actions L4, when it is
produced by an actor list AL1 that partially supports S and
an actor A that also partially supports S and the union L4

of the action sets that AL1 and A support is a super-set of
the action set that S requires.

It should be noted that we have not illustrated some addi-
tional rules that either describe the creation and comparison
of lists or the enforcement of some negotiation constraints
due to the space limitation of this paper. An example of the
latter type of rules is a rule forbidding an actor to have two
or more representations in a specific negotiation.

Reasoning Complexity: Our developed ontology does
not use the OWL-DL’s features of nominals and cardinality
constraints so it is a syntactic variant of the SHI(D)
Description Login (DL). However, we intend to enrich it
with cardinality constraints, so it would eventually be a
syntactic variant of the SHIN (D) DL. Both these DLs
have an ExpTime-complete complexity for reasoning about
concept satisfiability and ABox consistency.

Now, as we enrich our ontology with FOL rules, we
will have an undecidable reasoning process. For this reason,
we intend to translate the FOL rules into SWRL1 ones.
In this way, by combining OWL-DL with DL-Safe SWRL
rules [12], we reach a decidable reasoning process.

1www.w3.org/Submission/SWRL/



A. Examples of negotiation protocol discovery

In our example, we consider the case of bilateral nego-
tiation between two actors, i.e. a service provider p and a
service requester c. In order to show the reasoning capabili-
ties of our framework, we also assume the existence of two
assisting actors h1 and h2, that can help the service provider
and requester by extending their capabilities in order to
support the two role skeletons of the bilateral negotiation
protocol. For a better presentation, this example is separated
into three parts. In the first part, we describe the bilateral
negotiation protocol and its involved role skeletons. In the
second part, we describe the capabilities/actions of each
actor. Finally, in the third part we illustrate how our ontology
model captures the appropriate knowledge for performing
the negotiation protocol discovery .

Bilateral negotiation.: This negotiation protocol in-
volves two actors, i.e. a service provider and requester. The
following conditions apply for the enactment of the protocol:

• One of the actors is able to generate an offer from
scratch, i.e. the first offer in a negotiation;

• Both actors should be able to send and receive offers;
• Both actors should be able to generate counteroffers,

given an offer made by the counterpart;
• At least one of the actors is able to accept an offer and

generate the outcome of a negotiation;
• Both actors are able to receive the outcome of the

negotiation.
Hence, we can identify three role skeletons involved in

this protocol:
• Initiator, able to generate the first offer.
• Participant, able to send and receive offers, to generate

counter offers, and to receive the outcome of the
negotiation.

• Decision maker, able to accept an offer and generate
the outcome of a negotiation.

One and only one of the actors must be able to support
the first role skeleton (Initiator). Both actors should support
the second role skeleton (Participant), whereas at least one
of the actors should support the third role skeleton (Decision
Maker). Thus, there are some rules that govern the way the
role skeletons of a negotiation protocol should be supported
by the negotiating actors.

As already introduced while discussing rule (5), we con-
sider exclusive role skeletons (i.e. one role skeleton must be
supported by only one negotiating actor). For this reason,
the new role skeletons of this negotiation protocol are:

• Initiator: Must be able to generate the first offer (Action
co), to send and receive offers (Actions so and ro), to
generate counter offers (Action cco) and to receive the
outcome of the negotiation (Action go).

• Participant: Must be able to send and receive offers, to
generate counter offers, and to generate the outcome of
the negotiation (Action sto).

Initial Facts Entered (describing actions, protocols and capabilities of actors):
Action(co),Action(so),Action(ro),Action(go),Action(cco),Action(ao),Action(sto),
Actor(p),ableToPerform(p,[co,so,ro,go]),Actor(h1), ableToPerform(h1, [cco, so, ro]),
cooperatesWith(p, h1), Actor(c), ableToPerform(c, [cco, ro, so, ao, sto]), Actor(h2),
ableToPerform(h2, [cco, ro, so, ao, sto]), cooperatesWith(c, h2), BilateralNegotiation(bn),
Initiator(i), performs(i, [co, cco, so, ro, go]), Participant(pa),
performs(pa, [cco, ro, so, ao, sto]), Role(provider), Role(requester)

⇓ (Rules 1 - 4 and 5 - 9 fired creating new facts)
fSupportsSkel(c, pa), fSupportsSkel(h2, pa), PossibleDelegation(d), canDelegate(c, d),
delegatee(d, h2), skel(d, pa), pSupportsSkel(p, i), pSupportsSkel(h1, i),
pSupportSkel([p], i), actionsSupported([p], [co, so, ro, go]), supportSkel([p, h1], i),
actionsSupported([p, h1], [co, cco, so, ro, go]), PossibleCooperation(pc),
inCooperation(p, pc), cooperators(pc, [p, h1]), ofSkeleton(pc, i)

" New Facts Entered (indicating the negotiation between p and c):
Negotiation(n), participatesIn(p, n), takesRole(p, provider), participatesIn(c, n),
takesRole(c, requester), ofNegotiation(provider, n), ofNegotiation(requester, n)

⇓ (Rule 5 is fired and creates the desired fact)
candidateProtocol(n, bn)

Figure 4. Facts and their inferencing.

Capabilities of Actors: We assume the following facts
for our example:

• The actor p participates in the negotiation and takes
the role of the service provider. The actor p is able to
perform the actions co, so, ro, go.

• The actor c participates in the negotiation and takes
the role of the service requester. The actor c is able
to perform the following actions: cco, so, ro, ao, sto.

• The actor h1 does not participate in the negotiation and
is able to perform the actions cco, so, ro.

• The actor h2 does not participate in the negotiation and
is able to perform the actions cco, so, ro, ao, sto.
Reasoning: The service provider p does not fully

support the Initiator role skeleton, but it may support it
through the cooperation with actor h1. The service requester
c fully supports the Participant role skeleton, but it may also
support it through a full delegation to actor h2. Thus, the
negotiation n between p and c actors can be enacted through
the use of the bilateral negotiation protocol. This is ensured
by rule (5). In the following, we illustrate the process where
facts are entered and new facts are produced from the set of
rules (1)-(9).

Initially, only the facts regarding the description of the
actors and the negotiation protocol are entered in the ontol-
ogy model. Then the majority of rules fire and new facts
are produced, detecting if each actor can support the role
skeletons of a protocol irrespective of the negotiations in
which it is going to participate. Then new facts are entered in
the model that describe the negotiation that is going to take
place between the two actors. Finally, based on all previous
facts, rule (5) is fired and the fact that the negotiation can
use the bilateral negotiation protocol is produced. The whole
process is depicted in Fig. 4 along with all the facts entered
and derived.

V. RELATED WORK

The need for automated negotiation of quality SLAs
and contracts, is being addressed as one of the main driver



for the adoption of service based systems in real-world
scenarios [13]. However, the literature has usually focused
only on the negotiation enactment phase. In this context,
we identify two different approaches for the enactment of
Web service QoS negotiation, i.e., the broker-based and the
agent-based approaches. With the broker-based approach,
the execution of negotiation is delegated by service providers
and customers to a trusted broker [14]. Conversely, in the
agent-based approach each negotiation actor defines its own
agent, which embeds the actor’s negotiation strategies [15],
[16]. In both cases, the structure of the negotiation protocol
is usually known a priori by the participants. Moreover, the
ability of the broker to execute a protocol or of negotiation
agents to enact a given negotiation protocol is taken for
granted.

Activities and roles within a generic negotiation protocol
are discussed in [9] in the context of negotiation support
systems design, while a theoretical analysis of customizable
generic negotiation protocols is presented in [17]. In partic-
ulat, the latter work can be used in future extensions of our
approach to give solid theoretical basis to the identification
of relevant activities and roles within a given negotiation
protocol.

Research on generic or semantic-based negotiation proto-
cols belongs mostly to the area of agent-based computing.
In this context, the work presented in [10] discusses an
agent-based software framework for defining and executing
negotiation protocols. The focus of the work is on the
definition of a set of rules, from which several protocols,
such as auctions or bilateral negotiations, can be instantiated.
Also in this case, the framework does not focus on the
description of agents negotiation capabilities and takes for
granted the ability of negotiation agents to participate in an
instantiated negotiation protocol. In [18] Chiu et al. discuss
how an ontology can be helpful for supporting the nego-
tiation. In particular, the authors highlight how shared and
agreed ontologies provide common definitions of the terms
to be used in the subsequent negotiation process. In addition,
they propose a methodology to enhance the completeness
of issues in requirements elicitation. Lamparter et al. [19]
introduce a model for specifying policies for automatic
negotiation of Web services. In this case, the starting point
is the upper ontology DOLCE (Descriptive Ontology for
Linguistic and Cognitive Engineering) [20]. On this basis,
this work proposed a policy ontology that also includes the
user preferences specifications and an additional ontology
for expressing the contracts.

About the use of ontology for specifying the agreement
among parties, Oldham et al. [21] present reasoning methods
for the components of an agreement which must be compat-
ible for quality matches. This approach is based on WS-
Agreement and takes advantage of Semantic Web methods
to achieve rich and accurate matches. With the same goal
Uszok et al. [22] have developed KAoS policy ontology that

allows for the specification, management, conflict resolution,
and enforcement of policies within the specific contexts
established by complex organizational structures.

VI. CONCLUDING REMARKS

In this paper we introduced a framework based on
an ontology to support the negotiation in a SOA. Using
this framework service requesters and providers are able to
describe which are the negotiation protocol they are able
to carry out and what are the actions they can perform. In
case a negotiation is required, by an ontology reasoning, the
framework can identify which are the actors involved and
according to which protocol a negotiation can be executed.

At this stage the framework is mainy focused on the
identification of the set of negotiation protocols that can
be potentially executed. Future work will be focused on
an extension able to select the best negotiation protocols
among the discovered ones. In addition, a broader analysis
of the impact of this framework in the Service Oriented
Architecture has to be analyzed in terms of cost/benefit
analysis. Indeed, on the one hand, our framework has the
main advantage of making possibile the communication
of services that could not previously occurred due to the
unfeasibility of the negotiation. On the other hand, the
effort of describing capabilities and requirements along with
the time for executing the discovery process needs to be
considered, too.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube) and the Italian FIRB Project TEKNE



REFERENCES

[1] J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis,
“Contemporary Web service discovery mechanisms,” Journal
of Web Engineering, vol. 5, no. 3, pp. 265–290, 2006.

[2] K. Kritikos and D. Plexousakis, “Semantic qos metric match-
ing,” in ECOWS ’06: Proceedings of the 4th European
Conference on Web Services, 2006, pp. 265–274.

[3] M. P. Papazoglou and G. Georgakopoulos, “Service-oriented
computing: Introduction,” Communication ACM, vol. 46,
no. 10, pp. 24–28.

[4] A. R. Lomuscio, M. Wooldridge, and N. R. Jennings, “A
classification scheme for negotiation in electronic commerce,”
Group Decision and Negotiation, vol. 12, pp. 31–56, Decem-
ber 2003.

[5] P. Plebani and B. Pernici, “Urbe: Web service retrieval based
on similarity evaluation,” IEEE Transactions on Knowledge
and Data Engineering, vol. 99, no. 1, 5555.

[6] K. Kritikos and D. Plexousakis, “Requirements for qos-
based web service description and discovery,” in Proc. 31st
Annual Int. Computer Software and Applications Conference
(COMPSAC 2007), 2007, pp. 467–472.

[7] M. Comuzzi, K. Kritikos, and P. Plebani, “Semantic-aware
service quality negotiation,” in Proc. ServiceWave. LNCS
5377, Madrid, Spain, December 2008, pp. 312–323.

[8] A. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo,
P. Yendluri, T. Boubez, and U. Yalcinalp, “Web Ser-
vices Policy 1.5 - Framework (W3C Recommendation),”
http://www.w3.org/TR/ws-policy, September 2007.

[9] M. Bichler, G. Kersten, and S. Strecker, “Towards a struc-
tured design of electronic negotiations,” Group Decision and
Negotiation, vol. 12, pp. 311–335(25), July 2003.

[10] C. Bartolini, C. Preist, and N. R. Jennings, “Architecting
for reuse: A software framework for automated negotiation,”
in in Proc. 3rd Int Workshop on A gent-Oriented Software
Engineering, 2002, pp. 87–98.

[11] D. Trastour, C. Bartolini, and C. Preist, “Semantic web sup-
port for the business-to-business e-commerce pre-contractual
lifecycle,” Computer Networks, vol. 42, no. 5, pp. 661–673,
2003.

[12] B. Motik, U. Sattler, and R. Studer, “Query answering for
owl-dl with rules,” in ICWS 2004: Third International Seman-
tic Web Conference, vol. 3298. Hiroshima, Japan: Springer,
2004, pp. 549–563.

[13] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: State of the art and research
challenges,” IEEE Computer, vol. 11, pp. 38–45, 2007.

[14] M. Comuzzi and B. Pernici, “An architecture for flexible
Web service QoS negotiation,” in Proc. 9th IEEE Enterprise
Computing Conference, Enschede, The Netherlands, 2005.

[15] M. B. Chhetri, J. Lin, S. Goh, J. Y. Zhang, R. Kowalczyk, and
J. Yan, “A coordinated architecture for the agent-based service
level agreement negotiation ofweb service composition,” in
Proc. Australian Software Engineering Conference, 2006, pp.
90–99.

[16] E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, and M. L.
Villani, “Negotiation of service level agreements: An archi-
tecture and a search-based approach,” in In Proc. ICSOC’07,
2007, pp. 295–306.

[17] G. Kersten, S. Strecker, and K. Law, “Protocols for electronic
negotiation systems: Theoretical foundations and design is-
sues,” in Proc. EC-Web 2004 (LNCS 3182), 2004, pp. 106–
115.

[18] D. K. W. Chiu, S. C. Cheung, P. C. K. Hung, and H. fung
Leung, “Facilitating e-negotiation processes with semantic
web technologies,” in Proc. 38th Annual Hawaii International
Conference on System Sciences, 2005.

[19] S. Lamparter, S. Luckner, and S. Mutschler, “Formal spec-
ification of web service contracts for automated contracting
and monitoring,” in Proc. 40th Annual Hawaii International
Conference on System Sciences, 2007.

[20] C. Masolo, S. Borgo, A. Gangemi, N. Guarino,
A. Oltramari, and L. Schneider, “Wonderweb deliv-
erable d17. the wonderweb library of foundational
ontologies and the dolce ontology.” [Online]. Available:
citeseer.ist.psu.edu/masolo02wonderweb.html

[21] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour, “Seman-
tic ws-agreement partner selection,” in WWW 2006, 2006, pp.
697–706.

[22] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes,
M. Breedy, L. Bunch, M. Johnson, S. Kulkarni, and J. Lott,
“Kaos policy and domain services: Toward a description-
logic approach to policy representation, deconfliction, and
enforcement,” in Proc. 4th IEEE Int. Workshop on Policies
for Distributed Systems and Networks, 2003.


