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Abstract—Cloud computing has a big impact on the envi-
ronment since the energy consumption and the resulting CO2
emissions of data centers can be compared to the worldwide
airlines traffic. Many researchers are addressing such issue
by proposing methods and techniques to increase data center
energy efficiency. Focusing at the application level, this paper
proposes a method to support the process design by optimizing
the configuration and deployment. In particular, measuring and
monitoring suitable metrics, the presented approach provides a
support to the designer to select the way in which it is possible to
modify the process deployment in order to continuously guarantee
good performance and energy efficiency. The process adaptation
can be required when inefficiencies occur or when, although the
system is efficient, there is still room for improvements.

I. INTRODUCTION

Nowadays, researchers are more and more analyzing the
evolution and diffusion of cloud computing from a perspective
on sustainability. Assessments of the environmental impact of
cloud computing reveal that data centers consume an extremely
high amount of electricity [1]. Many contributions show that
the reduction of CO2 emissions, and energy consumption can
be achieved by considering several initiatives such as the
reduction of the cooling power consumption, the utilization of
green energy sources, server consolidation and virtualization,
and the utilization of greener machines. In the proposed
approaches, less attention has been paid to the analysis of
the impact of the design and deployment of the running
applications on energy efficiency.

Considering this application viewpoint, in this paper we
propose an approach for the optimization of the application
design and deployment. The optimization is driven by three
main factors: energy consumption, CO2 emissions, and the
satisfaction of performance requirements measured by suitable
metrics. The idea is to follow a process design life-cycle
where firstly, a business process (BP), i.e., a set of tasks, is
designed and deployed on the basis of the characteristics of
the system and of the designer expertise. Then, the system
continuously monitors the application in order to evaluate
if the requirements are satisfied or if there is anyway room
for improving the considered metrics. If changes are needed,
the designer should enact appropriate adaptation actions, that
will take place in the next execution of the BP and that are
able to address the discovered inefficiencies, by modifying
the workload distribution between different versions of the
considered BP. The approach described in this paper aims to
support the designer in the interpretation of the monitoring
results and in the selection of the adaptation action.

The paper is organized as follows. Section II discusses
previous contributions and highlights the innovative aspects of

the presented approach. Section III provides a general overview
of the approach that is formalized in the following sections:
Section IV focuses on the process design and deployment
phases, Section V introduces the relevant metrics, Section VI
describes the method that supports the designer in the selection
of the adaptation action able to optimize the process in terms
of performance and energy efficiency. Finally, Section VII
validates the approach with an example and Section VIII
outlines some possible future work.

II. RELATED WORKS

Energy efficiency and the control of CO2 emissions are a
living matter and, in the recent years, many researcher have
addressed these aspects at very different granularity levels. The
main issue when dealing with energy efficiency and CO2 emis-
sions consists in finding a direct or indirect way to measure
them. Moreover, the improvement in energy efficiency and
the CO2 emissions reduction cannot overlook the impact over
performance. A tradeoff between greenness and performance
has to be handled in order to respect functional requirements
of the provided services. Metrics for describing these two
aspects have been formalized in [2] and in [3]. In the former
work, the well known Key Performance Indicators (KPIs) for
evaluating Quality of Service (QoS) are integrated with a set of
energy related metrics called Key Ecological Indicators (KEIs).
The latter work introduces the concept of Green Performance
Indicators (GPIs), with a role similar to the KEIs. In [4],
authors put lights on the importance of considering also how
the available resources are used in the delivery of the service,
introducing usage centric metrics to this extent. This concept is
developed also in [5], where usage centric metrics are defined
at the server and the virtual machine level.

Measuring energy is not an easy task, especially when real
time data are required and when energy has to be measured
for each single server separately. Several approaches consider
CPU as the principal contributor to power usage in a server
and propose models for computing energy starting from the
amount of CPU used on the server [6] [7] [8] [9] [10]. These
models compute power usage using a linear relation between
CPU usage and power consumption. Parameters of the model
are the power consumption values for the server when idle
and when at the peak load. The only variable of the model
is the CPU load. It has been demonstrated that even a linear
approximation of this model is effective in estimating the real
power consumption [11]. An interesting aspect is that even in
idle state a server consumes more than the 60% of its peak load
power. This is why an optimization, even at the application
level can significantly contribute to the improvement of energy
efficiency and consequently to the reduction of CO2 emissions,
by optimizing the way in which resources are used.



Step 4. Execution and MonitoringStep 2. Process Deployment

Step 1. Process Design

T1

T2

T3

T4

T1
T2

T3
T4

VM1 VM2 VM3 VM4

Step 3. VM Deployment

T1
T2

T3
T4

VM1 VM2 VM3 VM4

PH1 PH2 VM3

T1
T2

T3
T4

VM1 VM2 VM3 VM4

PH1 PH2 VM3 M
on

ito
rin

g 
sy

st
em

Step 5. Optmization

Monitored 
data

Optimization function

Adaptation 
actions

VM configurations

Fig. 1. Energy-aware process design optimization approach

Some studies face the problem of energy efficiency and
greenness with a focus at the process level. In [12], authors
state that an improvement is possible only if the approach in-
cludes a process re-engineering step. Four areas of intervention
are identified: process design, measuring, improvement and
change, and implementation. Other approaches use process
annotation: the business process is enriched with additional
information regarding its behavior in terms of energy effi-
ciency [2] [13]. In [14], the authors define a set of patterns
for improving energy efficiency of a BP by adding a green
dimension to the traditional four dimensions: cost, time, flex-
ibility and quality. Other scholars focus their attention on
reconfiguration of the service. The general approach consists
in decomposing the process in sub-tasks that can be substituted
with similar but greener ones [15] [16] [17].

The approach proposed in our paper has been inspired by
the service composition and evolution as we aim to consider
variants and adaptation of the tasks that compose a service-
based business process, also considering green aspects. The
evaluation is based on the estimation of the workload of each
task. Given the workload, we will use a small selection of
the metrics defined in literature to assess the state of the
system and to compare different solutions in terms of energy
efficiency, CO2 and QoS. On the basis of these evaluations and
a set of possible actions to enact for improving the process
design and deployment, we support the designer decision
process: we alert designers if improvements are needed and
we also suggest the appropriate changes to apply.

III. PROPOSED APPROACH

The optimization of the design of energy-aware BP follows
the cycle shown in Fig. 1. First of all, we assume that the
application designer already knows which are the tasks that a
process should perform and the order in which these tasks have
to be executed (Step 1). The BPs we are considering in our
approach can be seen as processes composed of different tasks
running on Virtual Machines (VMs). A critical aspect about
our approach concerns the configuration of such VMs (Step
2). Next, the VMs are deployed on physical hosts that live
in a cloud infrastructure (Step 3). The problem of deploying
the VMs on the physical host is out of the scope of this
paper, as we rely on solutions that have been proposed in
the literature (e.g., [18] [19] [20]). Once the VMs of the
process have been deployed, the execution commences and
the monitoring system starts gathering information about the

process in terms of performance and energy impact (Step 4).
Such properties are inferred by measuring specific metrics
(e.g., CPU usage, response time, energy consumption). At the
end of the execution, the monitored data combined with the
supported adaptation actions will drive the optimization of the
BP (Step 5).

With such system, continuous monitoring and data analysis
allow application designers to intervene by means of adaptation
actions when changes are required (for instance, when terms
in Service Level Agreement are no longer satisfied). The
application designer can modify the application deployment in
different ways. In fact, we consider a BP with different tasks
that can be assigned to different VMs adopting various config-
urations. The BP execution could be changed in different ways.
For example, it is possible to modify the VMs configuration or
the way in which the tasks of the process are deployed on the
VMs, it is also possible to duplicate or remove duplicated VMs
and reallocate the workload. More details about the actions that
we consider in this paper are provided in Sec. IV.

The plethora of possible actions makes difficult the decision
of the application designers. Indeed, they should select the
more favorable adaptation action in terms of performance
and energy efficiency but such decision requires a complete
knowledge of the impact that the execution of the different
adaptation actions has on the system (i.e., monitored metrics).
The proposed approach aims to support the designer in such
a decision making process by suggesting the most suitable
adaptation action. The decision is based on estimations based
on previous executions. The methodology used to achieve this
goal is described in details in the following sections, according
to the five steps identified in Fig. 1.

IV. PROCESS DESIGN AND DEPLOYMENT

The first phase consists in the design and deployment of
the BP and includes the first three steps shown in Fig. 1.

A business process BP is a collection of tasks {Ti} which
are executed providing a valuable output. Tasks are linked
by control structures (e.g., sequence, choice, parallel) and
consequently are invoked with a given probability Pi. Such
probability is an information that reflects the typical interaction
of the user with the process. It is usually obtained from the
analysis of historical data derived from previous executions.
In case of first execution these values will be defined by the
application designer based on his/her experience.

BP = {hTi, Pii}
Assuming that WLBP is the total workload of the business

process, the workload for each task is given by:

WLTi = WLBP · Pi

It is necessary to consider that for the execution of each
task, one or more variants are available, i.e. functionally
equivalent tasks. As the workload of the task can be distributed
among the variants, the percentage of workload that will be
assigned to each variant is defined as:

Ti = {ti,j} = {hVi,j , Di,ji} where
P

j Di,j = 1

where ti,j is a variant of the task, Vi,j is the configuration of
the VM hosting the task and Di,j is the percentage of workload
of the task Ti assigned to the variant ti,j .



A configuration of a task variant consists of a specific
configuration of the VM on which the task runs. This means
that the same task can run on different VMs:

Vi,j = hqCPU, qRAM, qStoragei
where qCPU , qRAM , and qStorage indicates the number

of CPUs, the amount of memory, and the amount of storage
available for the VM on which the task runs.

In our approach, the distribution among the variants of the
same task, is supported by the optimization algorithm proposed
Sec. VI. This distribution will affect the workload submitted
to each variant for a given task as:

WLti,j = WLTi ·Di,j

In the process deployment phase, each variant ti,j is
assigned to a dedicated VMi,j , taking into account its con-
figuration Vi,j :

ti,j
assigned to�������! VMi,j

and each VM is than deployed on a physical server PHl:

VMi,j
deployed on��������! PHl

As a consequence of the adoption of variants at task level,
also variants at business process level can be defined as the
application of one or more adaptation actions Az . An action Az

is a complex action originated from the composition of one or
more atomic actions over the BP. An action can be expressed
as Az = {az,v}, where az,v has an impact on a single
task belonging to the business process. We can define atomic
actions as az,v 2 {Add(ti,x), Del(ti,x),Mod(ti,y, ti,x)} ,
where:

Add(ti,x) : Ti ! T 0
i where T 0

i = Ti [ ti,x ^
P

j D
0
i,j = 1

Del(ti,x) : Ti ! T 0
i where T 0

i = Ti � ti,x ^
P

j D
0
i,j = 1

Mod(ti,y, ti,x) : Del(ti,y) +Add(ti,x)

In addition to these actions, also the Nop action has to be
considered as the application designer can decide to avoid any
modifications.

Thus, applying a composite action Az to a business process
BP we obtain a variant BP 0 consisting in a different set of
task variants and in a different workload distribution among
them: i.e., BP

Az��! BP 0
z . Thus, the goal of the optimization

described in Sec. VI is to identify the variant that better
improves both the performances of the process and the en-
ergy efficiency assessed by using the metrics introduced in
Section V.

V. PROCESS EXECUTION AND MONITORING

Monitoring is fundamental to gather data about perfor-
mance and energy efficiency of an application. Such properties
are inferred by measuring specific metrics. In details, the set
of metrics considered in this work includes:

• VM resource usage parameters: CPU and memory
utilization percentages for a running application over
a run time interval are calculated by using the ratio be-
tween the amount of used and allocated CPU/memory.
The resource usage parameters also include IOPS that

is defined as the total number of I/O operations per
second.

• Throughput: number of performed transactions over a
period of time.

• Energy consumption: refers to the energy consumed
by the application in a specific period of time.

• CO2 emissions: quantity of CO2 emitted by executing
the specific application.

• Application performance: is the ratio between the
throughput of the VM in a certain time interval and
the energy consumed.

• Response time: refers to the time spent to serve a
single request.

More formally, each metric can be modeled as:

mh =< name, V > (1)

where the name identifies the metric and V corresponds to the
set of admissible values. It is represented by its extremes, i.e.,
V = [vmin, vmax].

Metrics can be collected at the BP level or at the VM/task
variant level. For each of these levels, users can operate a
restriction on the admissible range of values for each mh, in or-
der to require a specific energy consumption, or performance.
This restriction can be formalized as:

rh(c) =< mh, req, w > (2)

where c 2 {BP, {VMi,j}}, and req 2 mh.V . More precisely,
req represents the restriction on the range of admissible
values for metric mh computed over the component c. This
restriction corresponds to the values required by the user
for the given metric. Finally w 2 [0, 1] is the weight that
defines the relevance of the metric for the specific user (or
application) and provides a prioritization of the requirements.
Such requirements and constraints can be used to derive the
initial deployment of applications as well as provide impetus
for run-time adaptation of application deployment. Note that
the constraints can be hard constraints if the user considers
that they must be satisfied or soft constraints if the user also
accepts a constraint violation. Note that for the hard constraint
the relevance weight will be rh(c).w = 1 while for the soft
constraints rh(c).w  1.

Setting the set of values mh(c).req, the users identifies
the values related to desired (satisfaction zone) and undesired
(alarm zone) behavior for each metric. Also a warning zone
is defined slightly before the alarm zone, and its range of
values is identified automatically on the basis of the designer
requirements. In fact, such a range of values depends on
the strategy that the designer wants to adopt for the system
improvement. Two possible approaches are possible: proactive
and reactive. Adopting a proactive approach implies that a
warning is triggered before reaching a real violation, so that
the system can react in advance. It requires the usage of an
extended warning zone between the satisfaction and the alarm
zone. On the contrary, using a reactive approach implies a
warning zone very close to the alarm threshold. In this case the
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system reacts only when it is significantly close to a violation.
A general representation of the three zones for the metrics is
shown in Fig. 2, even if for some metrics either ThresholdMin
or ThresholdMax can be defined.

VI. PROCESS OPTIMIZATION

In the approach presented in this paper, inefficient situa-
tions are addressed by an adaptive behavior. The selection of
the best adaptation action to trigger requires performing two
sequential steps: a local and a global optimization.

Local optimization

This step requires the analysis of each process variant BP 0
z

in order to define the way in which the workload should be
distributed among the tasks defined in the process variants. In
fact, since the BP variants mainly consist in adding or deleting
task variants, a redistribution of the workload is always needed.
Such redistribution should be performed by considering that
the workload has an impact on all the metrics considered
in this paper. This statement is confirmed by existence of a
documented positive correlation between workload and CPU
load [21]. Furthermore, it has been demonstrated that CPU load
is directly proportional to the response time [7], the energy
consumption (see Sec. II), and, as a consequence, the CO2
emissions and application performance. The existence of a
correlation between the workload distribution and memory and
IOPS depends on the analyzed business process. Anyway, it is
possible to affirm that a change in the workload distribution
affects such two variables only in two ways: (i) the metrics
are unaltered (there are no dependencies with the workload)
(ii) the variables are dependent on the workload in a directly
proportional way.

On the basis of these considerations, our goal is to find the
set of workload distributions for each task variant {WLti,j}
that maximizes the following optimization function:

max F ({WLti,j}) = [�CO2({WLti,j}),�E({WLti,j}),
CX

c=1

HX

h=1

rh(c).w SSR({WLti,j})]

(3)
where �CO2 and �E are related to the minimization of
emissions and energy consumption. They are calculated as the
difference between the quantity of emissions and consumed
energy before and after the execution of the BP variant. The
number of satisfied soft requirements (SSR) refers to weighted
sum of the satisfied requirements, considering their relevance
for the users. The optimization problem should be solved
by considering the hard constraints that must be satisfied to
guarantee the system effectiveness and efficiency.

The solution of the optimization problem {WL⇤
ti,j} is the

vector of workload distribution on the different tasks and re-
lated variants that maximize the defined function. Such vector
will be calculated for each considered adaptation action Az .
In this way we will have Z workload vectors and, considering
such vectors, we store in the decision matrix DM the vector
Xz that contains the estimated values of the three attributes of
function F after the execution of the adaptation strategy (that
is in correspondence of the workload vector {WL⇤

ti,j}):

Xz = F ({WL⇤
ti,j}) = [�CO2({WL⇤

ti,j}),�E({WL⇤
ti,j}),

CX

c=1

HX

h=1

rh(c).w SSR({WL⇤
ti,j})]

(4)

Global optimization

The global optimization aims to identify the best adaptation
action to perform in order to maximize the goal function
among the {Az} set. We consider techniques from the Multiple
Criteria Decision Making theory [22]. Each alternative is asso-
ciated with a vector Xz that contains the three estimated values
of the attributes after the execution of the adaptation strategy
Az . Such estimation can be performed on the basis of the
results of previous executions as discussed later in this section.
The different vectors compose the decision matrix DM that
supports us in the strategy selection. The selection is carried
out by executing two main steps. First of all, the elimination
of all the dominated solutions is required. A solution Xm is
dominated if there is another solution which has better results
for all the considered attributes Xk: Xk,n � Xm,n for each n
(where n is the considered attribute and n 2 {1, 2, 3} in our
case). Secondly, we select the solution. The decision broker
will consider all the non-dominated alternative solutions. As a
first step, all the attributes are normalized in the range of values
[0, 1], so that they are comparable even if expressing different
goals. Then, the selection of the most suitable alternative can
be performed by using one of the following methods [22]:

• MAXIMIN rule: for each non-dominated solution Xz ,
the attribute with the lowest value is identified. Results
for all the solutions are compared and the one with the
highest “lowest value” is preferred.

• MAXIMAX rule: for each non-dominated solution
Xz , the attribute with the highest value is identified.
Results for all the solutions are compared and the one
with the highest “highest value” is preferred.

⇤
Both global and local optimizations rely on the computa-

tion of the application independent terms, i.e., �CO2, �E,
and application dependent terms, i.e., the number of soft
constraints that can be satisfied.

Application independent estimation

The estimation of energy consumption and CO2 emissions
are considered application independent as these parameters
mainly depend on the CPU load. For this reason, we can esti-
mate these two parameters analyzing physical servers having
the same average CPU load of the application that we are



going to deploy, regardless of the applications that are actually
running.

In order to evaluate the factor �E({WLti,j}), for each
WLti,j , first we consider logs of previous executions of the
task variant ti,j in order to find the relationships between
workload and CPU load. Thus, given a WLti,j we retrieve
the correspondent CPULoad(ti,j). Once we have this value
and we know the characteristics of the physical host PHl (i.e.,
peak power) on which the VMi,j is deployed, we estimate the
energy by gathering the power consumed by a similar task
deployed on a similar host. Such a similarity is computed
by comparing the CPU load of the analyzed task and the
characteristics of the host where it runs, to the hystorical data
of the hosts usage, looking for hosts with similar characteristics
that run applications with a similar CPU load.

The evaluation of the CO2 emissions is based on the
emission factors (gCO2e/kWh) provided by the national grids.
Considering the consumed energy E(ti,j) CO2 emissions is
computed multiplying the energy consumed by the emission
factor.

Application dependent estimation

In this section we estimate the last part of the objective
function described in Eq. 3, i.e., the number of metrics that
will be satisfied SSR.

As before, we try to predict the trends of the state of
the variables for a given distribution of the load between the
available variants of each task. In this case we can not use
the similarity criteria introduced in the previous paragraph.
In fact, the value of the variables is strictly dependent on
the application and it is very unlikely to find examples of
the variables behaviors in historical data for all the possible
configurations of the process.

Instead of using similarity, we propose an alternative tech-
nique based on correlations between variables. To this extent,
we build a Bayesian Network [23]. This network expresses
dependencies among variables using a directed acyclic graph
representation, where a parent-child relation between two
nodes defines a causal dependency of the child from the
parent. A Conditional Probability Table (CPT) at each node
expresses the probability for the node to get each one of the
allowed values given the state of its parents. A conditional
independence relation among variables representable as nodes
in a Bayesian Network is also defined [23]:

Definition 1: the conditional independence property be-
tween nodes in a Bayesian Network implies that a node is
independent on all other nodes given its parents, children and
children’s parents.

These properties of a Bayesian Network allow a simple
inference mechanism for predicting the most likely state of a
subset of variables given the state of all the other nodes in the
network.

The usefulness of a Bayesian Network representation for
our problem is twofold. First of all, it allows us to establish
dependence and independence relations among variables. In
this way, if we know that a subset of variables changes, we
can predict which are the variables that will be influenced and

G1

G2
G3

G5 G4

P(G4=S | G2=S, G3=S)
P(G4=S | G2=W, G3=W)
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Fig. 3. Bayesian Network expressing relations among variables states

which are the ones that remain the same. This allows us to
restrict the problem and to focus only on a subset of variables.
Second, even if the network is not able to predict the exact
value of the variables, it can be used to predict future states of
the requirements. In order to use a Bayesian Network repre-
sentation, variables have to be transformed into discrete values,
representing the satisfaction of the requirements defined over
them (see Sec. V and Eq. 2). In particular, each variable will
be expressed with 1 out of 5 values indicating if it is satisfied
(satisfaction zone), if it is violated (alarm zone), or if it is
still satisfied but near to be violated (warning zone) as shown
in Fig. 2. As an example, the CPU load has two alarm and
warning intervals, since it can be violated either if its value is
too high or too low. Indeed, if the CPU usage of a server is too
low, it is inefficiently used, while if it is too high it can have a
negative impact on performance. An example of a Bayesian
network for our context is shown in Fig. 3 1, where each
node is a variable and the CPTs contain parent dependent state
probabilities for each node. Through the Bayesian Network,
we are able to predict future states of the variables given the
modifications in the states of other variables.

The first step consists in building the network, by discover-
ing the relations among variables. Most of the time, Bayesian
Networks are manually created by experts. However, several
techniques are available in the state of the art to learn it
from historical values of the monitored variables. Here we
use an approach similar to the one described in [24] to learn
the structure of the network. Then, we learn CPTs using a
Maximum a Priori Estimation approach [25].

Once the network is created, it can be used to evaluate
a particular variant of the process. The evaluation procedure
starts when a request arrives. The input of the evaluation
process is a set of values of CPU load for the tasks that we
want to modify. In order to estimate future values, we use the
inference properties of the Bayesian Network. The input of the
inference has to be the set of values for all the nodes in the
network where the values of the node that we want to estimate
are hidden. So, starting from the input, the algorithm works as
follows:

1) The set of input values I are converted into discrete
values between 1 and 5 using the defined require-
ments.

2) The set of variables V that are influenced by the set of
input variables I are selected using the conditional in-
dependence rules of a Bayesian Network (see Def. 1).

1S = Satisfaction Zone, W = Warning Zone, A = Alarm Zone



3) An input vector InfInput for the inference proce-
dure is defined as follows:

• take the vector with the state of the variables
obtained by the monitoring system.

• modify the values of the variables in I with
the values computed at step 1.

• hide the variables in V from the vector.
4) Run inference with input vector InfInput obtaining

the most likely states for each variable in V associ-
ated with a probability PV for the variable to get that
state.

5) Return as output a binary vector InfInput0 obtained
from InfInput. A value equals to 1 means that the
requirements upon the variable are satisfied, while a
value equals to 0 means that they are violated. An
additional vector Conf of the same dimension is
also created with the values PV for each predicted
variable. The probability value for all the variables
that do not belong to V will be 1, because they are
considered as constant.

The probability value returned by the inference procedure
is used as a confidence parameter in the estimation of the value
for the third attribute of the optimization function.

VII. VALIDATION

To provide a validation of our approach, we consider a
sample BP (see Fig. 4), where a set of tasks are performed to
buy goods using an e-commerce Web site. This BP involves
several VMs where the tasks are installed and executed. Using
the notation introduced in Sec. IV, our BP is defined as:

BP = {hBS, 1.0i, hRO, 0.90i, hV O, 0.95i, (5)
hRP, 0.855i, hIP, 0.855i hCA, 0.045i}

To execute the business process and monitor the metrics intro-
duced in Section III, we relied on the BonFIRE infrastructure2.
For the sake of simplicity, and considering that the BonFIRE
platform is not now able to monitor the energy related metrics
and the I/O usage:

• As the memory usage does not change significantly
during the experiment, in this validation we focus on
the CPU Usage.

• For the energy-related metrics, we rely on the results
published in [8] to estimate the power of a physical
host based on the CPU load.

• We assume that each task of the BP lives on a
dedicated VM and that the resulting VMs are deployed
on different physical hosts.

• Although on a physical host, in addition to our VMs,
other VMs of other applications are running, we
assume that the CPU load of these external VMs
remains constant as we are interested in the variation
of consumption of our business process.

• The VMs can be hosted on data centers sited in France
and England where the average CO2 emission fac-

2http://www.bonfire-project.eu/

tors are, respectively, 146 gCO2e/kWh 3 and 567.17
gCO2e/kWh 4.

The two possible configurations of the VM used for our
validation are:

• VM2,2 = h 2 cores, 2 GBytes, 10Gbytes i.
• VM4,4 = h 4 cores, 4 GBytes, 10Gbytes i.

where a Linux Debian Squeeze v.5 distribution is installed,
along with Oracle Glassfish v3.1 to run the activities compos-
ing our BP.

Creating the Bayesian Network

The creation of the Bayesian Network requires a knowledge
about previous executions of the BP. At least during the first
design of our BP this kind of information is not available.
Nevertheless, as common behavior in case of service-based
business processes, we can assume that other instances of the
same tasks composing our BP have been previously used in
other processes.

Starting from the historical data collected from the moni-
toring system, and using the procedure described in Sec. VI,
we obtain a Bayesian Network describing the relations among
variables in the system. We consider to have metrics at two
levels:

• Task Level: metrics at this level are CPU load (CPU)
of the VM, throughput (TH) and response time (RT)
of the task variant running on the VM.

• BP level: metrics at this level are response time (RT),
throughput (TH), and application performance (AP) of
the whole process.

The network obtained for the considered example is shown
in Fig. 5, representing a simplified version of the real network.
In the picture, only a general task is represented, while in the
real network the same structure is replicated for each of the
tasks and their variants in the BP. In our example, we have
six tasks. The response time of all the tasks and their variants
contribute to the response time of the whole process, and the
same can be stated for the throughput.

Initial configuration

The application designer decides to initially run the six
tasks on six VMs having the same configuration (i.e., the
VM2,2). For these VMs, the designer initially does not add
any variant, so the workload of a given task is entirely sent to
the unique available VMs, thus:

BS = RO = V O = RP = IP = CA = hVM2,2, 1.0i
As hard constraint, we have RT (BP )  25min. As soft

constraints, we have:
• 8 Ti [70%  CPU(Ti)  90% ; RT (Ti)]

• TH(BP ) � 5tpm

• AP (BP ) � 8.5tpKWh.

3http://www.eumayors.eu/IMG/pdf/seap guidelines en.pdf
4http://www.defra.gov.uk/publications/



Fig. 4. Business process sample Fig. 5. Bayesian Network created
for the considered BP

TABLE I. VALIDATION RESULTS

Metric First Estimation Actual

Average CPU load

BS 88.24% 70.59% 74.06%
RO 20.84% 41.68 % 62.2 %
VO 68.38% 82.05% 85.5 %
RP 57.58% 63.3% 34.93 %
ID 42.82% 47.10% 48.23%
CA 0.2% 0.2% 1.93 %

Average BP Throughput 4.34 tpm 4.7 tpm 6.1 tpm
Average BP Response Time 22.8 20.0 17.67
Energy Consumption 31.974 KWh 27.193 KWh 26.731 KWh
CO2 emissions 4,668 gCO2e 4,964 gCO2e 4,903 gCO2e
Application Performance 8.14 tpKWh 10.37 tpKWh 13.69 tpKWh

The warning zone is set to be 5% away from the alarm
threshold for all the metrics.

Assuming that all of these VMs have been deployed in the
French data centre (the deployment of the VMs is under the
control of the cloud hypervisor), we obtain the results reported
in the second column of the Table I (i.e., “First”).

Adapting the deployment

Based on the results of the initial configuration, the ap-
plication designer aims to improve the quality of the process
by adapting the BP. According to the adaptation mechanisms
presented in Section IV, the application designer plans to
modify the configuration of the BS task by doubling both
the number of CPUs and the amount of memory to a BS0

variant, i.e.:

BS0 = hVM4,4, 1.0i

As we assume that in France there are no available VMs
which such features, this task will run in England. So, the
actions that the application designer takes into account are
Mod(BS,BS0) and Nop.

Considering the first adaptation action, as in this example
we assume that the application designer proposes only this
variant, the solution of the local optimization (see Eq. 3) is
simply such a variant and all the workload for the first task of
the BP is sent to BS0. Indeed, what we would like to demon-
strate in this validation is how the enactment of an adaptation
action can influence the values of the monitored metrics. As a
consequence, the two alternatives to be considered are XNop

and XMod.

About the alternative XNop the values for the �CONop
2 ,

�ENop result 0, since no modification has been done to the

process and this does not affect the energy metrics. About the
number of satisfied soft constraints, these values are computed
considering the data monitored during the previous execution
and constraints over the indicators. About CPU usage, only the
first task satisfies the given constraints, while constraints about
response time and throughput at the task level are satisfied for
all tasks except for the first one in which response time is
higher than the constraint and throughput is lower. At the BP
level, throughput is not satisfied and the same for application
performance.

The computation of the values for the alternative XMod

follows the application independent and dependent estimation.
These estimations are based on the monitoring data associated
with previous execution of the tasks composing our BP that,
as previously said, can be done for other instances in different
processes. The result of this estimation is reported in the third
column of Table I (i.e., “Estimation”).

About the application independent estimation, the energy
consumed by the application requires the knowledge of the
CPU load. Looking at the data about previous executions, we
search for instances of BS task running on a VM4,4 and
we discover that, having the same workload as in the initial
execution: (i) the CPU load of the BS task is reduced by
the 10% in the average, and (ii) the task runs faster by 20%.
This change in the CPU load and in the response time will
also affect the remaining tasks. For this reason, following the
structure of the BP , we analyze the previous executions to
estimate the CPU load given the new workload. For instance,
having a BS faster by 20% means that the workload rate
for the RO increases of the same amount (the effect of the
branch is considered insignificant) and looking at the data, we
understand how, under this circumstances, the CPU load for
the RO double (from 20.84% to 41.68%). The same kind of
assumption has been also done for the other tasks, but for
the CA that we know it is invoked very rarely for which the
CPU load remains unchanged. For the sake of simplicity, these
estimations are intentionally rough as a real estimation requires
a lot of assumptions and data available to the application
designer. For this reason, in the real scenario, we can assume
that such data, along with the experience of the designer, will
result in a more accurate estimation. Having the CPU load for
each of the tasks, the computation of the energy consumed by
the application follows the assumptions in [8].

Exploiting the Bayesian Network computed starting from
the monitored data (see Fig. 5), we estimate the number of
satisfied indicators for the CPU loads estimated in column 3
of Tab. I. According to that, the state of CPU(BS) changes



from warning to satisfied and CPU(VO) changes from alarm
to warning. All other values for CPU(Ti) are not affected. This
impact RT(BS) and TH(BS), now having a high probability
of being satisfied, while RT(VO) and TH(VO) were already
satisfied and the improvement of CPU(VO) does not change
this state. The modification of RT(BS) and TH(BS) affects pos-
itively TH(BP) with a consequent improvement of AP(BP). As
a consequence, the total count of satisfied indicators increases
of 5, counting indicators in the warning state as satisfied.
The hard requirements about RT(BP), already satisfied in the
previous configuration, is still satisfied.

As a consequence, the values of the objective function for
the two alternatives are:

XNop = (�CONop
2 ,�ENop,#SSRNop) = (0, 0, 12)

XMod = (�COMod
2 ,�EMod,#SSRMod) = (�296, 4.78, 17)

As can be observed, neither of the two solutions is dominant.
In order to decide the best of the two, one of the techniques
described in Sec. VI has to be applied. For example, using
the MAXIMIN approach, firstly, for each alternative the min-
imum value among the three attributes is considered, i.e., for
XNop action min(0, 0, 12) = 0 while for the XMod action
min(�296, 4.78, 17) = �296. Secondly, the solution to prefer
is the one that is associated with the highest number: in our
case the maximum between 0 and �296 is 0 and then the
XNop solution is considered as suitable (i.e., doing nothing).
This reflects the higher importance given at the CO2 emissions
with respect to the performance and energy consumption.

VIII. FINAL REMARKS

In this paper we presented an approach for supporting the
energy-aware adaptation of business processes at design time
driven by an optimization problem that takes into account both
infrastructural, applicative, and environmental standpoints. In
particular, the adaptation actions available to the application
designer rely on the definition of variants for the tasks com-
posing the business process.

This approach is now heavily based on the assumption that
monitored data about previous executions are available, and
information able to give the values for the interesting metrics
are all included in this knowledge base. For future development
of our approach, we aim to relax this assumption, trying to
understand if we can infer the values of the metrics in case
the data needed to compute them analytically are not present.
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