
Supporting Policy-driven behaviors in Web services:
Experiences and Issues

Nirmal K Mukhi
IBM T J Watson Research Center

P O Box 704
Yorktown Heights, NY 10598

nmukhi@us.ibm.com

Pierluigi Plebani
IBM T J Watson Research Center

P O Box 704
Yorktown Heights, NY 10598

ppleban@us.ibm.com

Ignacio Silva-Lepe
IBM T J Watson Research Center

P O Box 704
Yorktown Heights, NY 10598

isilval@us.ibm.com

Thomas Mikalsen
IBM T J Watson Research Center

P O Box 704
Yorktown Heights, NY 10598

tommi@us.ibm.com

ABSTRACT
The Web services platform is gaining popularity as the tech-
nology of choice for integrating applications in diverse and
heterogeneous distributed environments, such as the Inter-
net. It is widely recognized that one of the barriers pre-
venting widespread adoption of this technology is a lack of
products that support non-functional features of applica-
tions, such as security, transactionality and reliability. Sup-
porting such features in a service-oriented environment is
more complex than traditional distributed computing envi-
ronments since such behaviors cannot be assumed by ap-
plications, but some persistent representation of the behav-
ior has to be discovered dynamically. WS-Policy has been
touted as a possible future standard way to specify these
features and associate them with services, but the multi-
tude of related proposals resemble a poorly manufactured
jigsaw puzzle more than a coherent vision.

This paper clarifies this vision by presenting a working
prototype that demonstrates how the quality features can
be expressed as service policies using WS-Policy. These
policies are enforced by a policy framework that allows dy-
namic association of such non-functional features with ap-
plications on a per-interaction basis, as well as modification
of these features. The paper discusses the issues involved
in the creation of such a policy framework, and how the re-
quirements of having to support transactional and reliable
services guided the design. We hope that this work encour-
ages other efforts to create viable products based on these
emerging standards and advances the science of Service Ori-
ented Computing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSOC’04,November 15–19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011 ...$5.00.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design, Reliability, Security, Standardization

Keywords
Service–oriented computing, Web services, Metadata exchange,
policy

1. INTRODUCTION
Service Oriented Computing (SOC) is gaining prominence

as the need for dynamic discovery and binding, a feature of
service oriented architectures, is seen as a core requirement
for the next generation of business applications. A particu-
lar standards-based instantiation of Service Oriented Com-
puting, Web services [5], is seen by many as a viable plat-
form for integrating scientific as well as business applications
that operate in distributed and heterogeneous environments.
The promise of platform independence, interoperability and
a realization of SOC concepts has led to this popularity.
However, the platform has lagged in delivering important
features such as security, transactionality and reliability.

The important differentiator between supporting such fea-
tures in SOC environments versus in traditional, insular dis-
tributed environments is that services are forced to make no
assumptions about each other. In many other distributed
systems, information about which applications interact with
each other and how is well known at development time. By
contrast, in SOC there has to be an up-front, declarative
way of specifying the behavior that a service follows and
expects from services it interacts with. For example, the
algorithm used for signing a message, or transaction proto-
col used to safely conduct a business operation cannot be
decided by service developers in an out-of-band or ad hoc
manner. Metadata about services thus plays a central role in
enabling SOC interactions, as described in [6]. The focus on
metadata enables dynamic discovery and binding, and meta-

© 2003 IBM CorporationSummer student poster session August 12th, 2004

Policy at Design and Deployment time

Application
server

Web
Service

Service
Policy

Design-time Deployment-time

implement

require

deploy

provider

Supported
Policy

Server
Policy

Invocable
WS

Policy combination

publish
support

generate

attach
UDDI

Figure 1: Policy management during design and de-
ployment time

data based on standards enables interoperability. Metadata
is generated at various points in the development and run-
time lifecycle of an application, and needs to be communi-
cated to possible partners. Thus the problem is twofold:

1. To define a metadata format for specifying non-functional
features of applications and

2. To create a runtime framework designed around the
above metadata that can support secure, reliable and
transactional services.

Middleware research has addressed dynamically incorpo-
rating changes in non-functional behavior of applications to
different degrees (for example, see [2] for a solution based
on metaobjects, [8] and [10] for CORBA-based solutions,
and [4] for context-aware middleware in a mobile comput-
ing environment), but these works do not assume an SOC
platform, which comes with its unique challenges. Existing
Web service products have piecemeal support for such fea-
tures if at all. The existing support also lacks a complete
view and focuses on a particular set of features (for exam-
ple security). It does not take into account the common
requirements across all non-functional features, such as the
need for a common representation so we can reason about all
the behaviors of a service, or the need for dynamic exchange
of such metadata between services. This paper describes a
working system that attempts to present solutions to many
aspects of this problem. The contribution of this paper is
to dissect the issues involved in creating such a system, and
to describe our system design following the iterative process
we went through during development. We hope our expe-
riences help other researchers who are developing systems
that operate in the emerging SOC world.

The paper is structured as follows: in Section 2, we de-
scribe the issues involved in solving the problem. In Sec-
tion 3, we describe the model we use for representing non-
functional features of services, based on WS-Policy[3]1. In
Section 4 we describe our system design, detailing our expe-
rience of design refinement as we discovered the needs of the

1Since the WS-Policy proposal is in flux, we define our own
model for expressing service policies based on WS-Policy.
So while our model is not strictly conformant to the current
proposal, we believe that the modifications and interpreta-
tions we impose are necessary and will likely be addressed
by future versions of WS-Policy

© 2003 IBM CorporationSummer student poster session August 12th, 2004

Policy at Discovery and Run time

client

Requested
Policy

Effective
Policy

Policy combination

define

Supported
Policy

Invocable
WS

support

UDDI
query retrieve

This is the policy
I have to enforce

Figure 2: Policy management during run time

domains we addressed, viz. transactionality and reliability.
In Section 5 we describe a simple scenario involving service
interactions for a banking application which demonstrates
the usefulness of our prototype. We conclude in Section 6
with a discussion of open issues and future work.

2. ISSUES
A solution that is aware of the non functional features

of services first requires a standard way to describe such
features and secondarily a set of mechanisms to handle such
specifications. The next paragraphs present a discussion
about this two main aspects.

2.1 Representing non-functional service
behavior

2.1.1 Using WS-Policy
In Section 1, we described the need for a persistent meta-

data representation for non-functional behaviors. WS-Policy,
being promoted by some industry players, is a natural fit
since it is designed to specify the non-functional features
of a service. WS-Policy does not rely on a precise model
for describing non-functional features, but it is an exten-
sible framework in which multiple feature domains can be
included. As a brief description, WS-Policy defines a set of
possible feature configurations using three main operators:
ExactlyOne, OneOrMore and All. For example, consider a
service that can be associated with two features: the possi-
bility to encrypt (enc) and to digitally sign (dsig) a message.
The semantic of the three operators will be:

1. ExactlyOne(dsig, enc): only one of the two mecha-
nisms must be used at same time,

2. OneOrMore(dsig, enc): at least one of the two me-
chinisms must be used and

3. All(dsig, enc): both the mechanisms must be used.

Naturally these operators can be nested and combined in
order to create more complex expressions. It is worth noting
that WS-Policy does not define the feature vocabulary for

a particular domain, but is responsible only for grouping
features in order to identify a policy that can be attached
to a service. WS-Policy defines the guidelines for how a
policy assertion, specified in the vocabulary of a particular
feature domain, should be written. For details the interested
reader may refer to [3]; here we only mention that all policy
assertions, compliant to the WS-Policy specification, must
define when an assertion is required (the feature must be
always present) or rejected (the feature must be absent).

2.1.2 Granularity of policy attachment
A policy assertion can specify features for a particular

element of the service. For instance even if the digital sig-
nature feature is associated with all the messages handled
by the service, the encryption feature may be associated
only with a particular message which contains a confiden-
tial data. WS-PolicyAttachment[7] defines a way to attach
a policy to a service, along with the possible granularities of
that attachment. Policies attached to finer-grained service
artifacts (such as a message type) need to be combined with
those attached to coraser-grained artifacts (such as an oper-
ation within which that message of that type is exchanged)
to compute the policy that is in effect.

2.1.3 Multiple sources of policy documents
Policies may be created by different roles during the lifecy-

cle of a service. Figure 1 and Figure 2 show how the policies
are involved during the design, deployment, and run time.
In particular, the designer may associate some policies, col-
lected in a document called service policy, indicating the
behavior the service implementation is designed for.

Some policies, included in a document called server policy
may be associated at deployment time, by a system or server
manager. These would dictate the features that all services
deployed on that particular server are expected to have.

Finally, at runtime, policies associated with partner ser-
vice, called requested policy, which affect the features of the
service under question, may be discovered. These multiple
policies also need to be combined in order to compute the
effective policy for a particular message exchange.

2.1.4 Combining policies to create effective policy
All the policies defined during the service life-cycle can

be combined in order to obtain a subset of policies able to
satisfy what is requested by the different roles.

For example, as shown in Figure 1, the service policy and
the server policy are combined to obtain the subset of poli-
cies, i.e. supported policy, required by the service provider
also supported by the server which the service is deploying
on. Policies have to be combined in a way that preserves
the intended semantics. Doing this automatically requires
a careful consideration of the interpetation of each of the
operators in WS-Policy. Additionally, we have to deal with
policies that have different vocabularies, and talk about dif-
ferent feature domains.

We also have to deal with priority and conflicts. Policies
may be prioritized: for example, policies for a particular
service may override general purpose server policies, and
policies attached to a message type may override those at-
tached to an operation that involves a message exchange
using a message of that type. Conflict detection is needed
to ensure that the effective policy does not compose incom-
patible policies.

The manner in which conflicts can be detected results in
the following natural classification of policy incompatibili-
ties:

1. Incompatibilities arising from to contradictory policy
assertions (for example, a service policy that asserts
the need for encryption of a message while at the same
time rejecting encryption for the port type to within
which the message belongs) and

2. incompatibilities arising from assertions whose con-
tradictory nature is detected using knowledge of the
domain-specific semantics (for example, requiring en-
cryption using algorithm A while at the same time re-
quiring message compression using algorithm B may
not be technically achievable).

2.1.5 Negotiating runtime policy
The policy that is in effect for a particular interaction is

not the product of the service provider’s policy preferences
alone. The service requestor might have its own policies that
have to be taken into account in order to arrive at an agreed
effective policy. Thus, a matchmaking phase has to be per-
formed in order to identify (i) if the provider and requestor
policy preferences are compatible and, (ii) an effective pol-
icy reached after negotiation between both parties. In this
matchmaking process, the lack of a common feature vocab-
ulary presents a problem, which we will describe in greater
detail in the next section.

2.2 Issues in designing a policy framework
Open problems do not end at the specification and pro-

cessing of service policy documents. A service platform to
deploy services whose interactions are governed by such poli-
cies also needs to address a number of challenges:

1. Effective policies are not calculated until runtime in
many cases, so we have to dynamically compute the
logic needed to enforce a policy. Additionally, a policy
may allow for options, for example a reliability policy
may specify multiple possible qualities of service. The
actual policy in effect may not be known until a re-
questor sends a message from which the choice of the
policy can be inferred. Thus not only is the policy
handling logic dynamically computed, but the frame-
work has to verify during an interaction that the cor-
responding policy is in fact being enforced, and may
have to refine the policy that is in effect based on the
information exchanged.

2. Policy-related information (such as signatures or al-
gorithm specification for security policy, transaction
ID for a transaction policy, etc.) will be carried as
headers in messages. This information will need to be
manipulated by policy handling code which enforces
the policy. The order in which headers are processed
is important, since there may be dependencies between
policies. For example, the message and its headers may
need to be decrypted before anything else can be done.
So if a transaction policy is in effect at the same time,
the transaction headers cannot be processed prior to
the security handler decrypting the message.

3. Changes in a policy document need to be reflected in
the runtime logic that enforces it. An effective pol-
icy, once calculated, is not immutable. The process of

incorporating changes in policy into the enforcement
logic is non-trivial. At what point is it safe to replace
the existing logic with the newly computed enforce-
ment logic? What happens to ongoing interactions
that are using the previous version of the policy?

3. POLICY MODEL
A policy document represents constraints over the service

to which such a document is attached. The aim is that at
runtime the service must never violate the behavior speci-
fied via the policy assertions. In this way a policy document
can be viewed as a set of admissible configurations. Here
and elsewhere we refer to a configuration as being defined
by a particular set of non-functional features that must be
exhibited by the service, as specified in the policy. For ex-
ample, if a WS-Policy document attached to a service as-
serts ExactlyOne(enc, dsig) then the framework cannot ap-
ply neither, nor both of these security mechanisms at the
same time for all interactions with this service. It is very
useful to provide a boolean interpretation to the three WS-
Policy operators. Assigning the XOR, OR, AND boolean
interpetations respectively to the ExactlyOne, OneOrMore,
and All operators, an the boolean NOT to rejected asser-
tions, any WS-Policy document can be represented as a
boolean expression. In particular the Disjunctive Normal
Form (DNF) expression related to such a boolean expres-
sion explicitly identifies the set of all the admissible config-
urations for the service. For instance, referring to the ex-
ample ExactlyOne(enc, dsig) = enc∧dsig the DNF form is
∨(∧(enc, dsig),∧(enc, disg)). Here the DNF minterms rep-
resent the service admissible policy configurations. Since the
DNF is a disjunctive form only one minterm can be valid at
the same time.

Applying this interpretation to the multiple sources of pol-
icy as described in Section 2.1.3 in our model, we have three
main policy documents:

• Service Policy (SP) applicable to a service or an ele-
ment of a service,

• Platform Policy (PP), applicable to all services de-
ployed on a platform, and

• Requestor Policy (RP), specified by a service requestor,

where the respective DNF represents:

• SPdnf the set of admissible policy configurations inde-
pendently from the platform in which the service will
be deployed,

• PPdnf the set of admissible policy configurations the
platform offers to the services that are going to use
this platform, and

• RPdnf the set of admissible policy configurations the
user requires from a service.

These three kind of policies, each of them with two dif-
ferent representations, are used during the deployment and
invocation time in order to link together the platform the
service and the user constraints. In particular combining
SP and PP we obtain the Supported Policy (SPP), i.e. the
policy supported by the service when it is deployed on a
particular platform.

Such a combination is obtained according to the following
formula:

SPP = SP ∧ PP

Actually it is more interesting combining the DNF rep-
resentations. In fact the combination results in a selection
of all the minterms included in both the combining expres-
sions. In other words SPPdnf represents the set of admis-
sible policy configuration valid for both the service and the
platform. According to that we can state that the service
deployment will fail if the SPP is empty, i.e. no policy re-
quested by the service is supported by the plaftorm. For
example, if PPdnf = ∨(∧(enc, dsig),∧(enc, disg)) and the
SPdnf = ∨(∧(enc, transaction)) the policies cannot be com-
bined and the service cannot be executed in this particu-
lar platform (in this case the platform requires something
the service cannot support, i..e transaction). Otherwise if
SPdnf = ∨(∧(enc, dsig)) then SPPdnf = ∨(∧(enc, dsig).
SPP, thus, describes all the admissible configurations for a
service deployed in a particular platform independent of the
service requestor.

In the same way, combining the SPP and RP we can
obtain the effective policy (EP), i.e. the set of admissible
policy configurations which should be valid while the user is
invoking a service deployed in a particular platform. All the
incoming and outgoing message, indeed, will have to satisfy
one of the admissible policy configurations defined in the
EP .

Even if this approach appears very simple, it relies on the
assumption that the combining expressions are composed
by the same assertions set, also called vocabulary. In other
word if one expression does not specify anything about the
digital signature, for example, and the other one does then
any minterm can be equal since they differ at least for this
assertion (if SPdnf = ∨(∧(enc)) with the same SPP then
the SPP will be empty). Actually in a service oriented
environment this assumption is not always valid, and it is
too restrictive, since all the actors define their own policies
independently from each other. In this way the mismatch
between the vocabulary can be discovered only when the
combination phase starts. To solve this problem, the ”ab-
sency is negation” approach is followed, i.e. if an expression
does not specify an assertion the other expression includes
then the missing terms are considered rejected (the NOT op-
erator is applied). Using the same example, the expression
used during the combination phase will be SP ′ = SP∧(dsig)
obtaining SP ′

dnf = ∨(∧(enc, dsig)

4. POLICY FRAMEWORK DESIGN
The policy model now introduced represents the basis of

a Policy Manager able to process and enforce the service
provisioning according to the policy specifications. Figure 3
shows the main components of this Policy Manager totally
written with Java and compliant to the subset of Ws-Policy
specification specified in Section 2.1.1.

The module Policy4J is in charge to parse and store
the policy document according to the boolean interpreta-
tion described above. In this way, every policy document
is transformed in a tree form representing the correspon-
dent boolean expression. The Policy combination module
is invoked:

• during the service deployment to combine the service

© 2003 IBM CorporationSummer student poster session August 12th, 2004

or

and and

dsig dsig

not not

encenc

Architecture

Incoming
message

To the
service

Policy4J Policy
combination

Policy enforcement

or

and and

dsig enc

not not

encdsig

Ws-Policy
document

Ws-Policy
document

or

and

dsig enc

not

Security
header

RM
header

TX
header

Figure 3: Policy manager architecture

policy and the server policy obtaining the supported
policy, and

• during the service invocation to combine the supported
policy and the requested policy obtaining the effective
policy (the situation shown in the figure)

Once the effective policy is computed the Policy enforce-

ment module is in charge to process all the incoming and
outgoing messages in order to verify if all of them are com-
pliant to what the effective policy expresses. In particular
the enforcement module is composed by several policy head-
ers each of them dedicated to a kind of policy. As it will be
discussed in the following paragraphs each of these headers,
even if follow the same way to process the messages, require
a different approach to interact to the underlying infrastruc-
ture,

4.1 First Iteration
Given the issues to be addressed, our first policy frame-

work was designed to accomodate message interceptors that
would incorporate the logic required to enforce a policy.
These interceptors could be chained together.

Enforcing a policy has two distinct pieces of logic: one
that is responsible for translating relevant header informa-
tion to and from wire format into a memory model for a
message and its associated headers, and a separate piece of
logic which actually processes that information to enforce
the logic required by the policy. Thus, there were two pro-
cessing chains in this framework: a header processing chain,
and a policy handling chain. Each message exchange be-
tween a service and a partner had a potentially unique ef-
fective policy. We took the approach of having one common
header processing chain for all such message exchanges, and
then choosing an appropriate policy handling chain based
on the policy in effect for that message exchange.

Policy documents from various sources and attached at
different granularities are combined to create an effective
policy for each message exchange. The framework then
awaits the arrival of messages that are part of this mes-
sage exchange. As messages arrive, the framework chooses
from the available set of handlers an appropriate subset and
chains these together to create a handler chain for this mes-
sage exchange. As we noted in section 2, the policy may in-
clude options. Based on the incoming messages, the choice
of policy eventually becomes clear and the configuration of

the chain is then fully determined. All future messages that
are part of this exchange will then be filtered through the
same set of handlers chained in that particular configura-
tion.

In our first design, we consciously avoided addressing is-
sues regarding dependencies between header processors or
handlers; i.e. we assumed that the framework creates header
processing and handler chains with full knowledge of depen-
dencies, so that those chains are correct by construction.
Additionally, we avoided the issue of incorporating dynamic
changes in policy, so once a handler chain for a message ex-
change was fully determined, it would not be modified even
if a policy that contributed to the effective policy was mod-
ified.

4.2 Supporting transactions
The WS-Coordination and WS-AtomicTransaction speci-

fications define message formats and protocols for interoper-
able distributed transaction processing in a Web services en-
vironments. Additionally, the WS-AtomicTransaction spec-
ification defines WS-Policy assertions to describe an end-
point’s ability to support and participate in these protocols.
The intended audience for such policies are other services.
We define transaction policies that describe transaction pro-
cessing requirements that a service imposes on it’s environ-
ment (e.g., the container). Our transaction policies can be
attached to both outbound and inbound conversations.

For example, the policy PropagateTransaction attached
to an outbound conversation instructs the container to in-
clude the transaction context as part of the outgoing re-
quest. The policy TransactionRequired attached to inbound
conversations instructs the container to process a message
within the transaction context associated with the incoming
request, or (if the request is not associated with a trans-
action) create a new transaction, and process the message
within that context.

Such policies introduce additional requirements on our
policy framework. One requirement is that a policy handler
be able to alter the state of the system as opposed to simply
transforming a message: e.g., the transaction policy han-
dler needs to import, export, and demarcate transactions.
Another requirement is that the policy ”event space” be ex-
tended to include post-message processing events: e.g, the
transaction policy handler needs to be notified both before
and after a message has been processed by a service.

4.3 Second Iteration
The requirements described above highlight the limita-

tions of the approach described in our first design iteration
about the role of the policy handler. Indeed a simple lis-
tener, as we assumed the policy handler to be, cannot ac-
cess internal resources or invoke external services. Actually
such functions are required in order to perform operations
like saving the current state of the service execution, as well
as identifying and communicating with a transaction coor-
dinator which is avaiable as an external service.

Thus, a refinement of the policy framework design de-
scribed above is needed. In particular all the policy handlers
can be considered as normal deployed services which can ac-
cess to the resources like other services do. As before, all
policy handlers should implement a standard set of meth-
ods used by the policy manager for lifecycle management
and message notifications.

4.4 Supporting reliability
A WS-Reliable Messaging (WS-RM for short) policy han-

dler provides support for delivering Web Service requests
and responses as messages with delivery assurance guaran-
tees that include: at most once, at least once, exactly once
and in order. The first three guarantees are mutually exclu-
sive, while the last can be combined with one of the other
three (e.g., at least once and in order).

A WS-RM handler takes one of two forms. A WS-RM
Source handler assigns sequence numbers to outgoing ser-
vice request messages and inserts them into sequences. It
keeps track of what sequence numbers have been acknowl-
edged by processing sequence acknowledgements conveyed
in incoming service response messages (or in messages not
associated with service responses as well), and by sending
acknowledgement request messages if necessary. A WS-RM
Destination handler keeps track of incoming service request
messages that are delivered to a service provider. If in order
delivery applies, the Destination handler may need to sus-
pend delivery of a service request message until all preced-
ing service requests have been delivered. When an incoming
service request has been delivered, the Destination handler
sends an acknowledgement for the corresponding sequence
number, as part of an outgoing service response (or in a
message not associated with a service response as well).

Although the behavior to support WS-RM has been de-
scribed in terms of a policy handler as a message interceptor,
some WS-RM protocol messages (e.g., sequence acknowl-
edgement or create sequence) may need to be conveyed as
service invocations in their own right. Thus, a WS-RM pol-
icy handler also needs to behave as a managed service. In
addition, given that the WS-RM Destination handler may
need to suspend delivery of an incoming service request, the
Destination handler may turn out to interrupt the chain of
policy handlers itself. The chain will then need to be re-
sumed at the interruption point for any suspended service
request message that becomes ready for in order delivery.
This last requirement led to our third design iteration, de-
scribed below.

4.5 Third Iteration
The need for for the WS-RM handler have the ability to

interrupt a policy handling chain led us to the following
observation: policy handlers need have reflective behavior,
i.e. they need to have the ability to modify the behavior of
the framework that they are a part of.

So far, the reflective API we designed merely allows han-
dlers to suspend and resume processing of a message. This
makes it possible, for example, for the WS-RM handler to
suspend processing of an out-of-order message. Once miss-
ing messages arrive and it is safe to continue processing the
suspended message, some other actor in the system can ini-
tiate the resumption of processing. This is sufficient for the
WS-RM handler; in future we aim to extend the reflective
API so that handlers can inspect the chain they are a part
of, and modify the structure of that chain. This could be a
viable strategy for enforcing dependencies between handlers
in a chain.

5. SCENARIO
Summing up all the involved element discussed so far, the

following example presents how the policy driven behavior
should be used in the typical bank case (see figure 4). Here a

client

Transfer
Funds

Branch1

Branch2

SPP(transferfunds) =
tx ∨ rm1 ∨ rm2

SPP(branch1) =
tx

EF(client-trans) =
tx ∨ rm1

EF(trans-branch1) =
tx

EF(trans-branch2) =
tx

SPP(branch2) =
tx

Figure 4: Funds transfer showing dynamic discovery
and enforcement of service policies

transferfunds service relies on two bank account services,
viz. branch1 and branch2, to transfer money from one bank
account to the second. So we have three different services
in this scenario, running on their respective platforms, con-
nected by Internet and communicating via the operations
each provides. The functional interfacesof the services are
appropriately described by WSDL documents. As described
above the service description is also enriched by the non
functional description through a WS-Policy compliant doc-
ument and, in the same way, the supported policies of the
hosting platforms are defined. Following the policy model
we described in Section 3, let us suppose that the supported
service policy for the three service, i.e. the service policy
combined with the platform policy, are:

• SPP (transf) = ∨(tx, rm1, rm2)

• SPP (branch1) = tx

• SPP (branch2) = tx

where tx means ”transaction is required”, rm1 means ”re-
liable messaging with exponential backoff with particular
inactivity timeout and ack interval specified”, rm2 means
”reliable messaging with exponential only ack interval spec-
ified”.

In other words the communication between the transfer-
funds service and its client can be ensured using one of
the provided reliable messaging mechanisms. Moreover the
transferfunds service can also execute its application logic
over a transaction environment since the two service part-
ners support this kind of policy. Now, suppose that the
external client invokes the transferfunds service specifying
the amount to move between the two accounts. Such a mes-
sage is enriched with a set of headers also compliant to the
policy the client wants the service support. In this way the
tx and one of the two reliable message mechanisms, let say
rm1, can be requested. So, the platform hosting the transfer-
funds service combines these policy requests with the sup-
ported policy in order to obtain the effective policy. The
same operation will be done by the branch1 and branch2
services when the transferfunds starts to communicate with
them, and in particular, requires them to be a part of a
transactional protocol.

So, the obtained effective policies are:

• EF (client− transferfunds) = ∧(tx, rm1)

• EF (branch1− transferfunds) = tx

• EF (branch2− transferfunds) = tx

Based on these effective policies all the involved platforms
create a policy handler chain capable of processing the in-
coming messages. First of all, the handlers have to verify
that the incoming message is compliant to the supported
policy and, secondly, they must enforce what the effective
policy requires. In particular the policy handler chain of the
branch1 and that of branch2 is composed of only one han-
dler, i.e. the transaction handler, whereas the chain on the
platform which hosts the transferfunds service is composed
of the transaction handler and the reliable messaging han-
dler. In the latter case it is interesting to consider the the
order in which the incoming message should be processed
by the handlers belonging to the chain. In our case the re-
liable message handler has to be invoked first in order to
provide to the transaction handler a complete and free error
message.

6. CONCLUSION
This paper has described a working framework that uses

supports transactional and reliable services within a dy-
namic SoC environment. The use of service policies to de-
scribe features, combined with the dynamic exchange of such
policies between interacting services requires that the frame-
work support message exchanges where the protocols and
policies that apply are unknown until runtime. We have
shown how, through the use of a policy model based on WS-
Policy, we iteratively architected a solution for this problem.
The strength of our framework is that it is based on emerg-
ing standards and hence our experience is relevant for other
practitioners in the field.

However, there are a number of open issues we hope to
address in future work. Matchmaking between services is a
complex problem since it is difficult to reach an agreement
when the vocabularies used in describing policies are differ-
ent. The interpretation of extraneous or missing information
in the policies is unclear. In future we hope that WS-Policy
will address this issue. Our system did not support changing
policies at runtime. This is certainly a requirement for most
systems. The framework would have to keep track of what
policies contributed to an effective policy in order to sup-
port this feature. Additionally, each handler would have to
be able to tell the framework when it is safe to detach it from
an existing handler chain, so that dynamic modification of
the chain’s structure would be possible. Our implementa-
tion assumes that dependencies between policy handlers are
hardcoded into the framework logic, but of course in prac-
tice the framework cannot know about all policies and their
relationships in advance. Instead, there could be a declar-
ative way of specifying such dependencies; perhaps through
a metapolicy. This problem is discussed in [9], where the
authors discuss compositions of microprotocols, which are
analogous to policy handlers in our system. A metapolicy-
based solution is illustrated in the GlueQOS system[1]. An
alternative solution could put the load on the developer of
the policy handler to inspect the handler chain into which
it is introduced and insert itself into the correct position

within that chain. We briefly referred to this solution in
section 4.5. We aim to explore both approaches in a future
prototype.

7. REFERENCES
[1] Glueqos: Middleware to sweeten quality-of-service

policy interactions. In Proceedings of the 26th
International Conference on Software Engineering
(ICSE’04), pages 189–199. IEEE Computer Society,
2004.

[2] M. Astley, D. C. Sturman, and G. Agha.
Customizable middleware for modular distributed
software. Communications of the ACM, 44(5):99–107,
Apr. 2001.

[3] D. Box, F. Curbera, D. Langworthy, A. Nadalin,
N. Nagaratnam, M. Nottingham, C. von Riegen, and
J. Shewchuk. Web Services Policy Framework
(WS-Policy Framework). Published online by IBM,
BEA, and Microsoft at http://www-
106.ibm.com/developerworks/webservices/library/ws-
polfram,
2002.

[4] L. Capra, W. Emmerich, and C. Mascolo. Reflective
middleware solutions for context-aware applications.
In International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns
(Reflection), Kyoto, Japan, September 2001.

[5] F. Curbera, M. Duftler, R. Khalaf, W. Nagy,
N. Mukhi, and S. Weerawarana. Unraveling the Web
Services web: An introduction to SOAP, WSDL, and
UDDI. IEEE Internet Computing, 6(2):86–93,
Mar/Apr 2002.

[6] F. Curbera and N. K. Mukhi. Metadata-Driven
Middleware for Web Services. In Proceedings of the
Fourth International Conference on Web Information
Systems Engineering (WISE 2003), pages 278–286,
Rome, Italy, December 2003.

[7] M. Hondo and e. Chris Kaler. Web Services Policy
Attachment (WS-Policy Attachment). Published
online by IBM, BEA, SAP and Microsoft at
http://www-106.ibm.com/developerworks/library/ws-
polatt/,
2003.

[8] P. Narasimhan, L. Moser, and P. Mellior-Smith. Using
Interceptors to enhance CORBA. IEEE Computer,
32(7):62–68, July 1999.

[9] B. Redmond and V. Cahill. Supporting Unanticipated
Dynamic Adaptation of Application Behavior. In
Proceedings of the 16th European Conference on
Object Oriented Programming (ECOOP 2002), pages
205–230, June 10–14 2002.

[10] E. Wohlstadter, S. Jackson, and P. T. Devanbu.
DADO: Enhancing Middleware to Support
Crosscutting Features in Distributed, Heterogeneous
Systems. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
174–186, 2003.

