Retrieving Compatible Web Services

Vasilios Andrikopoulos

European Research Institute in Service Science (ERISS)

Tilburg University

Warandelaan 2, PO Box 90153, 5000LE, the Netherlands

V.Andrikopoulos@uvt.nl

Abstract—Service retrieval holds a central role during the
development of Web services and Service-Based Applications
(SBAs). The higher the number of available services, the
more complex it becomes to locate the service closer to the
developer needs. The complexity increases further with the
number of available service versions that could also be suitable
for this purpose. Existing approaches on service retrieval use
a similarity measure between service interfaces to identify
potentially relevant services. In this work we focus on intro-
ducing information about the compatibility of services while
calculating their similarity as the means for providing more
suitable results. For this purpose we update and extend an
existing Web services matchmaker called UDDI Registry By
Example (URBE).

Keywords-Service retrieval, service compatibility, similarity.

I. INTRODUCTION

During the recent years, the number of publicly available
Web services has been increasing steadily. Seekda!, one
of the largest Web services search engine, has indexed
almost 30,000 Web services. An important step in enabling
the Service-Oriented Architecture (SOA) paradigm is the
ability of service and SBA developers (simply referred to as
developers from now on) to be able to retrieve potentially
relevant services. In particular, in this work we focus on the
task assigned to developers to identify at design-time which
activity is to be performed and to discover and select the
Web services closest to their requirements [1]. Furthermore,
it is also necessary to be able to identify and replace services
participating in a service composition at run-time [2].

In this sense, service retrieval, frequently referred to also
as service discovery, is a critical step for reusing existing
services while developing other services and SBAs [3].
Several approaches have been proposed in the literature
for Web services retrieval, see for example [4]. We can
distinguish between two categories of solutions: registry-
based and ontology-based ones. Ontology-based approaches
do not usually consider the structure of the Web service
interfaces and they require additional effort to produce
a service description. For these reasons, and despite the
effectiveness of ontology-based approaches, we focus on a
registry-based solution.

Uhttp://webservices.seekda.com/

Pierluigi Plebani
Dipartimento di Elettronica ed Informazione
Politecnico di Milano
Piazza L. da Vinci, 32 20133 Milan, Italy
plebani@elet.polimi.it

In particular, we use as the starting point for our approach
the URBE matchmaker [1]. URBE is an approach for service
retrieval based on the evaluation of similarity between Web
service interfaces. In URBE, each Web service interface is
defined in Web Services Description Language (WSDL);
a matchmaking algorithm combines the analysis of their
structures with the similarity of the used terms in order to
retrieve relevant services for purposes of replacing a service.
As discussed in [1], URBE performs on average better when
compared to approaches like [3] and for this reason it was
selected as the baseline for our work.

Both URBE and similar solutions consider not only the
structure but also the semantics of candidate services. They
do not however take into account the purpose of each
element in the service description with respect to service
compatibility. Service compatibility refers to the property
of preservation of interoperability for internalized changes
to one or both interacting parties (service provider or con-
sumer), or equivalently, of the capacity for replacing one
service with another (also referred to as substitutability
and replaceability) [5]. Different elements in the service
description have different effects on interoperability: adding
for example an operation to a WSDL document does not
have any effect on existing clients of the service; removing
an operation however may affect them dramatically.

For this purpose, the work in [5] uses a subtyping relation
between the elements of service description documents in
order to formally define service compatibility. Following this
approach, compatibility is preserved as long as the properties
of covariance of output and contra-variance of input are
preserved. This is a property that is not considered in the
matchmaking algorithms discussed in URBE and similar
approaches.

To this effect, in this work we aim to combine service
retrieval with service compatibility with the goal of im-
proving the matchmaking of URBE. The new matchmaking
algorithm takes into account not only the interface structure
and term similarity, but also the importance of each element
for service compatibility. As a result of this synergy, re-
trieved services are not only similar to the required service,
but additionally, a minimum effort is demanded from the
developers in order to be able to use this service on the



composite service or SBA side. Furthermore, the updated
URBE implementation is shown to perform better both in
terms of precision and average response time with respect
to the older version.

The rest of the paper is structured as follows. Section II
provides a better background for the rest of the work by
discussing compatibility between service interfaces. Section
III enters into the detail on the evaluation of the matchmak-
ing between two service interfaces, and Section IV validates
the approach. Finally, Section V discusses related work and
Section VI focuses on concluding remarks and possible
future work.

II. SERVICE COMPATIBILITY

Service compatibility can be distinguished in two dimen-
sions: horizontal compatibility (or service interoperability)
and vertical compatibility (also known as substitutability
or replaceability) [5]. Horizontal compatibility or interop-
erability of two services expresses the fact that the services
can participate successfully in an interaction as service
provider and service consumer. The underlying assumption
is that there is at least one context (configuration of the
environment, resource status and message exchange history)
under which the two services can fulfill their roles. On
the other hand, vertical compatibility or substitutability
(from the provider’s perspective) or replaceability (from the
consumer’s perspective) of service versions expresses the
requirements that allow the replacement of one version by
another in a given context.

Compatibility is traditionally further decomposed into
backward and forward. A definition of forward and back-
ward compatibility with respect to languages in general,
and message exchanges between producers and consumers
in particular, is given in [6]. Forward compatibility means
that a new version of a message producer can be deployed
without the need for updating the message consumer(s).
Backward compatibility means that a new version of a
message consumer can be deployed without the need for
updating the message producer. Full compatibility is the
combination of both forward and backward compatibility.

The usual approach for defining what constitutes a com-
patible change to a service is to enumerate all possible
compatibility preserving changes to a service description,
usually a WSDL document. The allowed changes essentially
define the type of delta between two service versions for
which the versions are compatible and they are usually
expressed in a guideline style. These guidelines (see for
example [7]) can be summarized by:

1) Add (optional) message data types.

2) Add (new) operation.

3) Add (new) port type.

Any other modification like the removal, or any kind of
modification to an operation element is strictly prohibited,
as is the modification of the message data types (with

<xsd:complexType name="PODocumentl">
<xsd:sequence>
<xsd:element name="OrderInfo" type="xsd:string"/>
<xsd:element name="DeliveryInfo" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="PODocument2">
<xsd:sequence>
<xsd:element name="OrderInfo" type="xsd:string"/>
<xsd:element name="DeliveryInfo" type="xsd:string"/>
<xsd:element name="TimeStamp" type="xsd:dateTime"/>
</xsd:sequence>

</xsd:complexType>

Figure 1. Example of record subtyping.

the exception of addition of optional data types). This
guideline-based approach is easily applicable and requires
minimum support infrastructure and for that reason it is
widely accepted. On the other hand it is very restrictive
and it depends on service developers for deciding what is
compatible and what is not and acting accordingly. Even
if these rules are codified and embedded into a service
development/versioning tool as for example in the case
of [8], they will always be limited by two factors: their
dependency on the particular technology used (WSDL in this
case) and their lack of a robust theoretical foundation. For
these reasons [5] introduces the notion of T-shaped changes
based on the formal foundation of type theory for defining
what constitutes compatible service descriptions.

In order to apply type theory constructs to service in-
terfaces, [5] assumes that each service S is comprised of
records s that represent the conceptual dependencies inside
the service interface description. A service record s is a
subtype of another record s’ if and only if it has at least all
the typed properties of s’ (and possibly more) and all the
common properties are also in a subtyping relation. In this
case we write s < s’.

Fig. 1 shows an example of two service records that are
connected by subtyping using two versions of purchase order
PODocument data type: SPODocument2 < SPODocumentls
that is, PODocument?2 is a subtype (a specialization) of
PODocumentl since it contains more xsd:element
types — and the ones it contains are less general that the
respective ones of PODocument 1. The optional cardinality
of the DeliveryInfo element in PODocument1 is more
general than the obligatory participation in PODocument2,
since a message consumer that understands it as an optional
element can also understand the message always containing
it.

The records s in service S are distributed into two proper
subsets Sy, and S.q, representing the set of records for
which the service acts as a producer and a consumer of
messages respectively. Output-type records like (WSDL)
operation output or fault messages and all their affiliated
data types belong to the Sy, set. Input-type records like



Figure 2.

operation input messages and their affiliated data types are
in the Sy, set. Compatibility between service descriptions
S and S’ is defined based on this distribution as:

Definition 1 (Types of Service Compatibility). We define
three cases of compatibility:

o Forward: S <; S' < Vs € Spro, 35" € S),,,8 < s
(covariance of output).
e Backward: S <, S' < Vs' € S].,,3s € S5 < &

(contravariance of input).
o Full: S<.58 & 8<s 8 NS <y S

Definition 1 provides the general condition for the preser-
vation of compatibility. The differences between two service
descriptions S and S’ is expressed by a change set AS that
aggregates the set of primitive changes that occur to .S and
result to S’, that is, S" = S o AS. We classify the change
sets with respect to compatibility as follows:

Definition 2 (T-shaped changes). A change set AS is called
T-shaped, and we write AS € T where T is the set of
all possible T-shaped changes, if and only if, when AS is
applied to a service S it results into a fully compatible with
S service S' = S o AS, that is, S <. 5.

As long as a change set AS results in a horizontally or
vertically compatible (or both) version of a service, then
it belongs to the set T of all possible T-shaped changes.
By reasoning on Definition 1 using the definition of service
record subtyping we can conclude that the following change
patterns are T-shaped:

1) Add (optional) message data types, add (new) opera-

tion & add (new) port type [as above].

2) Remove one-way (only) operations.

3) Add (obligatory or optional) data types to output

messages.

4) Remove (obligatory or optional) data types from input

messages.

5) Add output message parts to operations.

6) Remove input message parts from operations.

These patterns therefore constitute the T-shaped changes
that can occur to a service and preserve its compatibility.
As it can be seen, these patterns are a super-set of the
preservation guidelines discussed in the above. Furthermore
they provide a more fine-grained approach for the managing

() —
S

Service tree-based representation and nested comparison in URBE.

the service compatibility while a service is evolving (see [5]
for a further discussion on the subject).

For purposes of service retrieval, a T-shaped change set
between service descriptions S’ = SoAS expresses the fact
that S’ and S are structurally equivalent. This means that
either S’ can be used as-is in place of the required service
description S, or that it is ensured that an adapter can be
generated that will enable the use of S/, using for example
an approach like [9]. In any case however, S’ is a positive
match for retrieving relevant to .S services. This observation
allows the incorporation of the theory presented above in
the URBE matchmaker, as we discuss in the following.

III. SERVICE RETRIEVAL
A. The URBE Matchmaker

The similarity algorithm running in URBE implements
a similarity function fSim : (S,S’) — [0..1] that, given
two service descriptions S — representing the requested
service, and S’ — representing the available service, returns
the similarity degree as a value included in [0..1]: the higher
the result of fSim, the higher the similarity between the two
interfaces.

Fig. 2 provides a high level view of fSim, in which
each service can be represented as a three-level tree:
first, we have S representing a portType, then the set
of operations S.opp, and finally, the set of parameters
(S.opy.in;, S.opy.out,,) representing the parameters of
the supported operations. As a consequence, the functions
which evaluate the similarity among the whole interfaces
(fSim), operations (opSim), and parameters (inParSim
and outParSim) are nested in the same way. More specif-
ically:

e fSim returns the similarity between S and S’ by
computing the similarity of the names of the portTypes
and relying on the function opSim;

« For each operation in .S, opSim identifies the operation
in S’ which is most similar to, computing the similarity
between the names of the operations and relying on
inParSim and outParSim.

« Finally, given two sets of parameters in .S, inParSim
and out ParSim find the most similar parameters in the
S’ considering the similarity of the names of parameters
and their data types.



Table I
SIMPLE DATA TYPE SIMILARITY.

dt
dataTypeStm | Integer | Real | String | Date | Boolean
Integer 1.0 0.5 0.3 0.1 0.1
% | Real 1.0 1.0 0.1 0.0 0.1
S [ String 0.7 0.7 1.0 0.8 0.3
Date 0.1 0.0 0.1 1.0 0.0
Boolean 0.1 0.0 0.1 0.0 1.0

It is worth noting that we used WordNet® as a term
taxonomy and the approach proposed by Pirré and Seco [10]
to compute the similarity among the terms by means of the
Java WordNet Similarity Library (JWSL)?.

B. Introducing Compatibility into URBE

The principal goal of this paper is to discuss how the anal-
ysis of service compatibility as discussed in Section II influ-
ences the computation of service similarity as implemented
in URBE. Generally speaking, service compatibility based
on T-shaped changes relies on a binary (on/off) approach:
two services are compatible if all the required changes
are T-shaped, otherwise they are not. On the other hand,
service similarity has a more fuzzy-oriented evaluation: two
services are more or less similar, depending on the common
operations and parameters. Combining the two approaches,
we modified the matchmaking algorithm on which URBE
is based so that it identifies and reflects the compatibility
issues identified by T-shaped changes.

In particular, we focus on the opSim function which
identifies the similarity between two operations by con-
sidering the parSim function, that, in turn, identifies the
similarity between two parameters. In the former version
of URBE, given two operations op € S and op’ € 5,
opSim calculates the similarity pairwise by comparing the
parameters par € op with parameters par’ € op’. When all
similarities are computed according to the values returned
by parSim, then opSim returns the global similarity by
taking into account the best matches obtained by solving an
assignment in bipartite graphs problem (as discussed in [1]).
It is worth noting that the similarity returned by parSim
depends on two factors: the similarity between the names of
the parameters and the similarity between the data types of
these parameters.

Focusing on the data type similarity, parSim differenti-
ates between simple XSD data types (e.g., xsd:string,
xsd:integer) and XSD complex data types (using
xsd:complexType constructor) *. To compute the sim-
ilarity between two simple data types that is implemented
by the function dtSim, five main classes [3] of data types
are identified: Integer, Real, String, Date, Boolean. In this

Zhttp://wordnet.princeton.edu/

3http://grid.deis.unical.it/similarity/

4Assuming that all the services can be described using WSDL, the data
types will be expressed using XSD schemas

way, similarity between two simple data types dt and dt’ is
inversely proportional to the information loss that will occur
if we apply a casting from dt to dt’. Table I, empirically
obtained, quantifies this information loss. For instance, if dt
belongs to the integer group and dt’ to the real group then
the similarity is 1.0 since we have no information loss. In
the opposite situation instead, the similarity is 0.5 since we
can convert a real into an integer but we lose the decimals.
Finally, if dt or dt’ is complex, the structure of the data
type is not considered and the similarity only depends on
the name of the data type.

Starting from this version of the algorithm, in this work
we integrate the subtyping theory, discussed in the previous
section, inside the parSim to improve the effectiveness of
the discovery algorithm proposed in URBE. In particular,
our work focuses on the analysis of complex data types
since the simple data type compatibility, as it is driven by
the casting of data types, already incorporates the notion
of compatibility. More in detail, consider two complex data
types dt and dt’ defined as follows:

dt = {dt;} and dt’ = {dt’;}

where each dt; and dt;- could be either simple of complex
data types. For the sake of simplicity, and without affecting
the generality of the approach, in the following discussion
we assume that the elements composing a complex data
type are all simple data types. To quantify the compatibility
between the two data sets, the function parSim(dt, dt’) =
[0..1] reflects how many elements in d¢ have a correspondent
in dt’, i.e.,

matching({dt;}, {dt’
S - 06
J

The goal of the matching function is to run the assign-
ment in the bipartite graphs where the elements in the two
matching sets are {dt;} and {dt’} and to return the number
of elements in d¢ that have a correspondences in dt’, i.e.,
dtSim(dt,dt’) > th, where th is a threshold. In case all
the elements in dt’ are covered, then parSim returns the
maximum compatibility, i.e., 1.0. If an element in dt does
not appear in dt’ then a new element should be introduced
and, according to the T-shaped changes definition, the data
types remain compatible and the parSim is not affected if
and only if dt and dt’ are input-type elements (Definition
1). On the other hand, if not all the elements in dt' are
covered by dt then some elements must be removed and
the compatibility is not ensured. In that case, parSim will
decrease proportionally to the number of these removals.
This analysis is inversed if dt and dt’ are output-type
elements.

Fig. 3 shows an abstract example of a possible matching,
where the weights labelling the edges are computed by the



dt dt
dtsim(dty, dt'y)

.

v
1.0 =

N 7
~e__7”

Figure 3.

Example of parSim execution.

dtSim function which calculates the similarity of simple
data types. In this case, assuming th = 0.8 the solution of
the assignment in bipartite graphs problem recognizes a sim-
ilarity between elements {(dt1,dt}), (dt2, dts), (dt4, dth)}.
As a consequence |matching({dt;}{dt’})| = 3, |dt;| = 4
and therefore parSim(dt,dt’) = 0.75.

According to this scenario, the value of the threshold th
becomes crucial for the approach. If th was set to a too high
value, two data types can be considered as matching only
if they are the same; otherwise, if th was set to a too low
value, it might happen that two data types are considered
relevant even if they are not. By using the tuning performed
for URBE this threshold is currently set to 0.3.

Furthermore, in case dt is a simple data type and dt’ is a
complex data type (or vice versa), the approach is similar:
the algorithm looks for one of the elements composing the
complex data type that is compatible to the simple data type
and the similarity is calculated as discussed above.

IV. VALIDATION
A. Experimental Setting

The effectiveness of the new approach has been validated
by measuring the precision and recall with respect to a
public benchmark obtained from the SAWSDL [11] ser-
vice retrieval test collection (SAWSDL-TC3) 5. SAWSDL
semantically enriches the WSDL-based service definition
by annotations: elements of the WSDL are annotated with
concepts organized in a reference ontology. The benchmark
consists of 1080 Web services covering different application
domains: communication, economy, education, food, medi-
cal care, travel and weaponry. The benchmark also includes
42 test queries, represented as SAWSDL documents, each of
which is associated with a set of services that the proponents
of the benchmark have defined as relevant.

Shttp://projects.semwebcentral.org/projects/sawsdl-tc/

Precision (i.e., number of relevant returned Web services
w.r.t. the number of returned Web services) and Recall (i.e.,
number of relevant returned Web services w.r.t. total relevant
Web services in the corpus) have been adopted as the pa-
rameters to evaluate the effectiveness of our approach [12].
More specifically, precision P(ws,) and recall R(ws,) are
defined as:

Plws,) = {ws; € Ret(wsy)|ws; € Rel(wsy)}|
a |Ret(wsg)|

R(ws,) = {ws; € Ret(wsy)|ws; € Rel(wsy)}|
e |Rel(wsy)|

where ws, is the query, Ret(ws,) the returned services after
submitting the query, and Rel(ws,) the relevant services for
the given query.

An additional parameter to validate the performance of
the algorithm is given by Average Precision (AP). Precision
and recall are measures for the entire result set without
considering the ranking order, whereas AP depends on the
precision at a given cut-off point (P™). Thus, assuming
Ret™(wsq) as the set including the first n returned services,
P for a given query ws, is defined as:

{ws; € Ret"(wsy)|ws; € Rel(wsy)}]
n

P (ws,) = |

AP is the average of precisions computed after truncating
the list after each of the relevant documents, as long as all
the relevant documents are retrieved:

ET»:L.NPr(qu)

AP =
(wsq) {ws; € Retl, |ws; € Rel(wsg)}|

where N = |[{ws; € Ret(wsy)|lws; € Rel(wsq)}| is the
number of relevant documents.

Finally, the Top-5 (obtained as P°(ws,)) and Top-10
(P1%(ws,)) precision metrics are also considered. These
parameters give the precision considering only the first 5 or
10 entries, respectively. The higher the value, the higher the
probability to have a relevant service in the first positions.

All these parameters had been calculated for each of the
42 test queries included in the benchmark. The averages of
these parameters will be used as a basis for the evaluation
of the algorithm in the next paragraph.

All the experiments discussed in this paper have been
done on an MacOS X 10.6 installed on Intel Core 2 Due 2.33
GHz and 8 GBytes of RAM. The part of the algorithm able
to solve the linear programming problem exploits the open-
source application LPSolve® and it has been formulated to
always obtain the global optimum result.

Ohttp://sourceforge.net/projects/Ipsolve/



09

0.8

0.6

Precision
o
(4]
T

0.4

03

0.1

T T
—»— baseline

—&— sigmoid
—6— cutting(0.99)

0 I I I I
0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1
Recall

Figure 4. Precision Recall charts.

B. Results

The effectiveness of the presented approach is illustrated
in Fig. 4. As a baseline for its evaluation we consider
the precision/recall chart of URBE, ran without the com-
patibility analysis described in this paper. Such a chart is
compared with the new approach implemented with two
main variants. These variants, i.e., sigmoid and cutting,
influence the behaviour of dtSim. In URBE, this function
returns a value in [0..1] that depends on the values in
Table I as discussed in the previous section. Applying a
sigmoid function to the returned value, we obtain a value
that distinguishes better between similar and not similar
data types. A more radical distinction is performed with
the cutting variant, a binary function that returns O or 1
in case the value returned by dtSim is below or above
a given threshold. The figure reports only the best curves
that had been obtained running these variants with different
parameters. In particular, in case of sigmoid, the center is
set to 0.7, whereas about the cutting variant, the threshold
is set to 0.99.

According to the results shown in Fig. 4, the mixing of
compatibility and similarity improves the average precision
of the system by +5.5% if running the cutting variant, while
with the sigmoid variant the average precision increases
by +1.6%. In addition, focusing on the Top-5 and Top-10
precision (Fig. 5), the cutting variant improves these param-
eters of about +3.7% and +2.4%, respectively. The sig-
moid variant improvement is more limited: +0.6% +0.2%,
respectively. These results suggest that overall, considering
the compatibility in the matchmaking algorithm increases
the precision of the service retrieval. Moreover, a binary
approach when comparing two data types (as in the case of
the cutting variant) is preferable to express compatibility.

Another interesting advantage of this new approach is its
execution time. Indeed, one of the main limitations of URBE
is its high response time. In particular, with the benchmark
adopted in this validation, URBE required on average 53.26s
to answer to a query, with each comparison taking about
49ms to be performed. Using the variants introduced in this
paper, the response time has a significant decrease. More
specifically, the average query response time with the sig-
moid variant is 35.29s (—33.7%) whereas the response time
for the cutting variant is 31.80 (—40.3%). Each comparison
requires only 29ms. To compute the execution times, we
executed the algorithm 10 times on the same machine. The
reported values represent the average of the observations.

This interesting decrease of the response time is a result
of the different way in which the elements composing the
data types are compared. In baseline URBE, the comparison
always involves a semantic similarity between the name
of the complex types included in the services description.
This requires to access the knowledge base collecting the
terms and to calculate the similarity. With the new approach,
the knowledge base is accessed only if the compatibility
between the data types can not be assessed directly (as in
the case of comparing simple and complex data types for
example). This has a significant impact on the time required
for calculating similarity, without nevertheless affecting the
quality of the retrieved information.

V. RELATED WORK

Several works have been proposed in the literature for
the evaluation of service compatibility. The approaches pre-
sented in [7], [8], [13], [14] for example, discuss (backward)
compatibility as an enabler of controlled service evolution.
As long the changes modifying a service respect a set of
guidelines for backward compatibility, then the evolution of



T
[ Ibaseline
09F I sigmoid N
I cutting099
08 0771 -0.776...0790 §
0.695 0.719
07l 0.693
0.6 0.546 0.555 0.576
S —
2 o5l
<4
o
0.4
0.3
0.2
0.1

AP

Figure 5.

the service leaves the service consumers unaffected. In this
sense, new versions can substitute the older versions and the
emphasis is on the vertical aspect of service compatibility.
The approach presented here uses a theoretically-backed
method based on type theory (as presented in [5]) in order
to achieve the same goal.

As discussed in the previous sections, applying our ap-
proach in retrieving compatible Web services does not
guarantee that the retrieved results can be used as-is and
may require the use of an adapter for this purpose. Works
like [15], [16], [17] and [9], among others, discuss the
generation of such an adapter, ensuring the interoperability
of the service with its consumers. While in these approaches
it is not guaranteed that an adapter can be generated in
the general case, the fact that our approach selects only
compatible services can be interpreted as a guarantee that
the required information for producing such an adapter is
contained in the service descriptions [5].

Similarly to our approach, other works in the literature
also rely on the syntax of the Web service description
and compare the signature of the requested service with
respect to the signatures of the existing Web services. This
type of approach is closely related to the work in reusable
components retrieval literature [18]. In this field, as stated
by Zaremski and Wing, there are two types of methods to
address this problem: signature matching [19] and spec-
ification matching [20]. In particular, signature matching
considers two levels of similarity introducing the exact and
relaxed signature matching. In our work, signature matching
represents the core of the approach. In addition, our simi-
larity algorithm also quantifies how similar a Web service
is to another one, instead of simply dividing the retrieved
Web services in exact matching and relaxed matching ones.
Furthermore, as in the case of [2] and [3], our approach
takes into account the structure of the service description for

Top5 Top10

Average, Top-5, and Top-10 Precision.

the matchmaking process. In addition however, our approach
considers the role of each description element with respect
to the resulting compatibility between service descriptions.

VI. CONCLUSION & FUTURE WORK

In this work, we introduced an approach for service
retrieval based on the analysis of service compatibility and
service similarity. With respect to the former, a subtyping
theory suitable for service description documents is adopted
as a foundation for checking the compatibility of elements
composing a service description. Concerning the latter, the
URBE matchmaker is used as the baseline approach for
defining how much two services are similar by reasoning
on their interfaces. Combining these two ideas resulted in an
updated URBE matchmaker. The validation of our approach
demonstrates that the introduction of service compatibility
improves the effectiveness of our service retrieval algorithm,
not only in terms of precision and recall, but also in
terms of response time. Both the original and the updated
version of URBE are available as an open-source project at
http://sourceforge.net/projects/urbe/.

Future work will concentrate on further improvement of
the precision and recall by also considering the semantics of
the data types defined by SAWSDL annotations. In the lit-
erature there exist other matchmaking algorithms, on which
service retrieval is based, that perform better with respect to
URBE (see for example [21]). Using the data type annota-
tions in a semantic variant of URBE called URBE-S also
results in overall good performance: the average precision
with the SAWSDL benchmark is 0.749 [1]. The performance
of these semantically-enabled matchmakers however heavily
depends on the analysis of the annotations that characterize
the SAWSDL service description. By integrating this seman-
tic analysis to the compatibility-enabled analysis introduced
in this paper, we aim at outperforming both URBE-S and
the similar solutions.



ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community 7th Framework Programme
under the Network of Excellence S-Cube Grant Agreement
no. 215483.

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

(12]

[13]

REFERENCES

P. Plebani and B. Pernici, “URBE: Web service retrieval based
on similarity evaluation,” IEEE Transactions on Knowledge
and Data Engineering, vol. 21, no. 11, pp. 1629-1642, 2009.

A. Zisman, G. Spanoudakis, and J. Dooley, “A framework for
dynamic service discovery,” in 23rd IEEE/ACM International
Conference on Automated Software Engineering, L’ Aquila,
Sep. 2008, pp. 158-167.

E. Stroulia and Y. Wang, “Structural and semantic matching
for assessing Web-service similarity,” International Journal
of Cooperative Information Systems, vol. 14, no. 4, pp. 407-
438, 2005.

J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis,
“Contemporary Web service discovery mechanisms,” Journal
of Web Engineering, vol. 5, no. 3, pp. 265-290, 2006.

V. Andrikopoulos, A Theory and Model for the Evolution of
Software Services. Tilburg, Netherlands: Tilburg University
Press, 2010, no. 262.

D. Orchard Ed., “Extending and versioning languages: XML
languages [Editorial draft],” Jul. 2007. [Online]. Available:
http://www.w3.0rg/2001/tag/doc/versioning-xml

K. Brown and M. Ellis, “Best practices for web services
versioning,” Jan. 2004. [Online]. Available: http://www.ibm.
com/developerworks/webservices/library/ws-version/

K. Becker, A. Lopes, D. S. Milojicic, J. Pruyne, and S. Sing-
hal, “Automatically determining compatibility of evolving
services,” in ICWS 2008, 2008, pp. 161-168.

H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera,
and F. Casati, “Semi-automated adaptation of service inter-
actions,” in Proceedings of the 16th international conference
on World Wide Web. Banff, Alberta, Canada: ACM, 2007,
pp- 993-1002.

G. Pirr6 and N. Seco, “Design, implementation and evaluation
of a new semantic similarity metric combining features and
intrinsic information content,” in OTM ’08: Proceedings of the
OTM 2008 Confederated International Conferences, Coopls,
DOA, GADA, IS, and ODBASE 2008. Part II on On the
Move to Meaningful Internet Systems. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 1271-1288.

J. Farrel and H. Lausen, “Semantic annotations for WSDL and
XML schema,” http://www.w3.org/TR/sawsdl/, April 2007.

R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen, and
N. Du, “A version-aware approach for web service directory,”
in International Conference on Web Services (ICWS) 2007,
Jul. 2007, pp. 406-413.

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

R. Weinreich, T. Ziebermayr, and D. Draheim, “A versioning
model for enterprise services,” in Advanced Information Net-
working and Applications Workshops, 2007, AINAW °07. 21st
International Conference on, vol. 2, 2007, pp. 570-575.

S. R. Ponnekanti and A. Fox, “Interoperability among in-
dependently evolving web services,” ser. Lecture Notes in
Computer Science.  Toronto, Canada: Springer Berlin /
Heidelberg, 2004, pp. 331-351.

P. Kaminski, M. Litoiu, and H. Miiller, “A design technique
for evolving web services,” in Proceedings of the 2006 con-
ference of the Center for Advanced Studies on Collaborative
research, ser. CASCON ’06. New York, NY, USA: ACM,
2006.

A. Brogi and R. Popescu, “Automated generation of BPEL
adapters,” in ICSOC 2006, ser. Lecture Notes in Computer
Science. Springer, 2006, pp. 27-39.

E. Damiani, M. G. Fugini, and C. Bellettini, “A hierarchy-
aware approach to faceted classification of objected-oriented
components,” ACM Trans. Softw. Eng. Methodol., vol. 8,
no. 3, pp. 215-262, 1999.

A. Zaremski and J. Wing, “Signature matching: a tool for
using software libraries,” ACM Trans. Softw. Eng. Methodol.,
vol. 4, no. 2, pp. 146-170, 1995.

——, “Specification matching of software components,” ACM
Trans. Softw. Eng. Methodol., vol. 6, no. 4, pp. 333-369,
1997.

M. Klusch, U. Kiister, B. Konig-Ries, A. Leger, D. Martin,
M. Paolucci, and A. Bernstein, “4th international seman-
tic service selection contest. performance evaluation of se-
mantic service matchmakers,” http://www-ags.dfki.uni-sb.de/
~klusch/s3/s3c-2010-summary-report-v2.pdf, October 2010.



