
Retrieving substitute services using semantic
annotations: a foodshop case study

F. Calore, D. Lombardi, E. Mussi, P. Plebani, and B. Pernici

Dipartimento di Elettronica e Informazione – Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
XXXX, {mussi,plebani,pernici}@elet.polimi.it

Abstract. XXX

1 Introduction

The main goal of this project, was represented by the creation of a food ontology
to be used for web services annotation and in order to accomplish this objective
searches for a valid model to use as a reference have been performed. Eventu-
ally the ontology was built basing on the European classification of food with
series of appropriate modifications and optimizations, as shown in the following.
Once the ontology was completed, the subsequent task of the project consisted
in using it as a semantic model to create WSDL-S starting from web services
representing food warehouses, and then use a semantic search tool to test if the
semantic annotation are useful to find services that fit clients needs. All of the
above described tasks were aimed to achieve a small portion of the multiple
goals defined in Ws-Diamond, Web Services - DIAgnosability, Monitoring and
Diagnosis project [1]. In the following of this paper aspects of annotations with
Radiant, the search tool and results of searches will be presented.

PARTE DA COMPLETARE (ENRICO, POI BP)

2 Food Ontology creation

Before starting to create the food ontology some searches have been carried out
in order to find a valid model to be used as a reference. A first result has been a
sample ontology used in the W3C [2] OWL Guide, composed of a union of two
different parts, a wine and a food ontology : the former being too much detailed
compared to the desired descriptive level, the latter being designed based on a
different concept and therefore showing some redefinition and extension needs.
The food part of this ontology was essentially made up of a single macro class
divided into eight subcategories: the builders point of view had been mainly fo-
cused on describing food as part of a dish or course as defined by someone willing
to create a restaurant menu. However using this ontology as a model for food,
with warehouses and suppliers in mind and a property about food decay, would
have been a rather complex and non-linear process, because of different concept



behind this ontology and the one needed for the project. Also, the number of
individuals was too low and the number of changes and optimizations necessary
to fit project needs would have been noteworthy. So it was clear that building a
brand new ontology would have been a better option, although for some aspects,
such as properties number or detail of the wine branch, the sample ontology was
richer than the one later on created from scratch.

Searches for an ontology to be used as a model, however, made possible to
find a document which has become the basis for the food ontology construction.
This Document, created by the Food Safety Authority of Ireland [3] is based
on European Union classification of food and describes twenty-one categories in
which goods are classified, with a very large number of examples. These infor-
mations were a perfect starting point even if, during the creation of the ontology
using Protg [5], changes and integration have obviously been necessary.

The twenty-one classes have been subsequently subdivided in multiples sub-
classes to increase the ontologys level of detail and, since it was needed to sep-
arate perishable from not perishable food, leaves containing both of them have
been subdivided according to this principle. The distinction based upon food de-
cay has been necessary because web services to be subsequently annotated in a
second part of the project could have been both warehouses with non perishable
food or suppliers with perishable goods. A datatype property named “isPerish-
able”, with Boolean range, has been defined and associated with classes using
the correct value, to distinguish the ones with perishable individuals from the
others. This restriction and the disjoint between siblings classes entails that the
ontology uses OWL DL [4] sublanguage. The ontology population has been done
using the examples inside Food Safety Authority of Ireland document as main
reference, with an appropriate selection after many searches on the web. Also,
further searches on food producers and big food resellers websites have been
made with the aim to augment the quantity of individuals, reaching this way a
number of about a thousand instances or so.

In Figure 1 a global view of the ontology classes hierarchy is portrayed.

3 Semantic annotations

The purpose of semantic annotations for this project was to enhance food sell-
ing web services based on identical interfaces and differentiate them using their
different kinds of goods. The following WSDL-S [6] file describes a service rep-
resenting a food warehouse that can be used by actors willing to buy the same
category of products offered by the selling actor; it only provides, given the na-
ture and distinction between food based on decay , non perishable goods having
“isPerishable” property set to False value and that belong to one of the ontol-
ogy classes marked as non perishable. Semantic annotations have been added to
every WSDL [7] entity somehow related to food, message parts and operations.
The following are the most significant excerpts, message and operation parts,
taken from a WSDL describing a frozen meat selling service after annotations
with Radiant [8] were complete:



Fig. 1. Food ontology



<wsdl:message name="reserveRequest">
<wsdl:part name="itemList" type="xsd:string" wssem:modelReference="Ontology5#FrozenMeat"/>
<wsdl:part name="customerInfo" type="xsd:string"/>
<wsdl:part name="PID" type="xsd:int"/>

</wsdl:message>

This annotation of the document has been bound to the “itemList” part of
message “reserveRequest”. This choice is motivated because of what “itemList”
represents, that is a string used by the message to hold food items while the
remaining parts, and therefore the message itself from a global point of view,
do not closely match with any of Foods semantic concepts. This same approach
in annotating only leaves that were definitely related to food has been used
for every annotation of other messages. Besides them, every operation has been
annotated because, although not strictly related to food, they have at least one
input or one output referred to messages containing a part semantically bound
to an element of the Food ontology.

<wsdl:operation name="checkAvailability" parameterOrder="customerInfo itemList PID unPerishableList availability" wssem:modelReference="Ontology5#FrozenMeat">
<wsdl:input message="impl:checkAvailabilityRequest" name="checkAvailabilityRequest"/>
<wsdl:output message="impl:checkAvailabilityResponse" name="checkAvailabilityResponse"/>

</wsdl:operation>

The above is one of the operations of this WSDL-S file and, as just stated,
they were annotated according to a given criterion but also to easily comply with
a requirement of the adopted research tool, that explicitly needs every operation
of a WSDL-S file to be annotated. This constraint could be an issue in case
of different types of WSDL files, whose operations could not be annotated by
simply using concepts from the same semantic model adopted for message parts.

4 Service retrieval for substitutability

Semantic annotations have been exploited during the Web service retrieval. We
assume that a user request is defined using an annotated WSDL where the
desired operations are listed and annotated as well as their input and output
parameters. In the same way, all the available Web services are annotated in the
same way as described above.

The Web service retrieval algorithm is based on a similarity distance compu-
tation. The higher a published Web service is similar to the requested one, the
better the published Web service fulfill the user request.

Entering in the detail, similarity among Web services is computed compar-
ing names and annotations at all levels in the WSDL-S description: service level,
operation level and parameter level. On the one hand, name comparison re-
lies on the assumption that all the names are included in a reference ontology.
Such an ontology can be, for instance, Wordnet. On the other hand, annotation
comparison relies on the same ontology adopted for annotating the Web service
description.



Name similarity Given two names their similarity is returned by the function
simName(namea, nameb). In detail:

– simName = 1 if namea = nameb or namea and nameb are connected in
the ontology by a “is-a” relationship.

– simName = 1
(lengthpath(namea,nameb)+1) if namea and nameb are connected

by a subsumption path and lenghtpath return how many hops constitutes
such a path

– simName = 0 if namea and nameb are not connected or there are connected
by a “opposite-to” relationship.

Annotation similarity The similarity evaluation between two annotations de-
pends on the nature of the annotations that could be terms or properties. More
precisely, the simAnn(anna, annb) is defined as follows:

– simAnn = simName if anna and annb are both terms.
– simAnn = max(simAnn(anna,termb,i))

2 ∀i ∈ cod(annb) if anna is a term and
annb is a restriction on a property.

– simAnn = max(simAnn(terma,i,annb))
2 ∀i ∈ cod(anna) if anna is a restriction

on property and annb is a term
– in case both anna and annb are restriction on property the similarity takes

into account the relationship among the restrictions:

• if the restriction are equivalent simAnn = 1
• if the properties have not any relation then simAnn = 0
• if the properties have some relations:

SimAnn =
SimProp(anna, annb)

2
+
SimName(dom(anna), dom(annb))

2
(1)

SimProp(anna, annb) =
1

level(anna, annb) + 1

SimWS Given these two functions, i.e., simName and simAnn, the similarity
among Web services is obtained as the average of the similarity among opera-
tions:

SimWS(sa, sb) = Σi=1,N

max(SimOp(opa,i, opbj
))

n
(2)

SimOp returns the operation similarity which takes into account both the
similarity among the operation names (simOpName) and the similarity among
the input and output parameters (simOpPar)

SimOp(opa, opb) =
SimOpName(opa.name, opb.name)

2
+
SimOpPar(opa.par, opb.par)

2
(3)



if the both requested and published operations are annotated then simOpName =
simAnn. Otherwise the simName are used to compare the names adopted to
identify the operations.

About the parameters similarity the same importance has given to both the
inputs and output parameters.

SimPar(para, parb) =
SimParIn(para.in, parb.in)

2
+
SimParOut(para.out, parb.out)

2
(4)

Regardless of the kind of parameter the similarity is obtained comparing the
names or the annotation associated to the parameter name using the nameSim
and annSim introduced above. Even in this case, the parameter similarity is
given by the average of the maximum similarity among the parameters.

5 Analysis of Results

To test the effectiveness of semantic annotations, similar services have been an-
notated with links to different semantic concepts inside the food ontology. Then,
with a semantic search tool created by Eng. Prazzoli [10], some searches have
been done, to see if the results provided by the tool were coherent with seman-
tically annotated web services. In particular the semantic search behaviour has
been tested when services were annotated with classes related with father/child
bound and with completely disjoint classes. The search tool has an input zone
where a similarity threshold value can be entered. The tool uses this value to
filter out results, and for these tests the similarity threshold has been set to 0.1,
a low value, in order to better observe how the tool works with disjoint classes.
The results obtained were good, in fact in the first case, where two services were
annotated with classes related with a father/child bound, the tool retrieve both
services, assigning them two different scores, the higher to the one searched and
the lower to the child (or the father in a second inverted test). In the second
case instead only one service has been retrieved by the tool, in accordance to
the disjoint between classes and demonstrating that the tool works well.

Results obtained during tests, have been analyzed to find out how good
they were using some of the measures of Information Retrieval: Precision, Recall
and Fallout. Precision indicates the proportion of retrieved and relevant web
services to all the web services retrieved. Once a similarity threshold has been
chosen by a user, the tool filters all results that dont meet users needs and
therefore it retrieves only relevant services, resulting in a Precision value of 1.
Recall indicates the proportion of relevant documents that are retrieved, out
of all relevant documents available and, considering what has been just said
above about similarity threshold chosen by user, the tool will retrieve all relevant
documents available. Fallout at last, indicates the proportion of non-relevant
documents that are retrieved, out of all non-relevant documents available, which
is none, as stated when talking about Precision. All these values are “too perfect”
and this is because of the consideration about the similarity score chosen by



the user. Differently, considering as relevant only web services which exactly
match the search, Precision value will decrease along with the decreasing of the
similarity threshold and, by doing this, the value of Fallout will increase. Recall
instead will maintain its value of 1 as long as the similarity threshold wont be
greater than the similarity score of the relevant service, when this happens Recall
will go to 0.

For the time being one of the major constraint about semantic annotations
for WSDL is related to multiple annotations: apart from those services providing
only one kind of food items there should be obviously some services more similar
to a real scenario, that is a multiple categories seller which raises a question
about how annotations could reflect this concept. There is actually a way to
represent a single entity within a WSDL file using different semantic concepts
but neither WSDL-S nor SAWSDL [9] declare any relation between different
URIs composing a multiple annotation, even if they all have to be considered
admissible. At this time the main purpose of this feature is to suggest how a
single concept can be expressed, and hence referenced, by different semantic
models or using different languages and, however, the adopted research tool
does not currently support more than a single URI in every annotation of a
WSDL document. Its hence impossible, for this project, to semantically define a
web service as a multi-item store such as, for example, a meat and eggs selling
service, so a choice must be done to annotate the service as a only meat or only
egg seller. Doing this, the research tool will obviously not “know” when services
may offer something they arent annotated with and this changes all the results
obtained in the analysis above. To evaluate this aspect of a real world scenario,
a sample group of services has been used, containing 2 egg selling services and
8 services selling items disjoint from eggs, among which 2 services have been
considered also egg selling (but not annotated as egg selling). Research for egg
selling services has been done, obtaining this way a modification of the Recall
value compared with the results obtained above; Recall value this time will be
indeed 2/(2+2) = 0.5 and this result will obviously change when a different
sample group of service will be used.

6 Conclusions and future work

This whole work is roughly composed of three phases: the creation of an ontol-
ogy describing a specific domain, namely food; the use of such semantic model
to annotate WSDL documents in compliance with WSDL-S rules and, finally,
a series of test to verify actual benefits deriving from this project. Some of the
different kinds of problems encountered during each phase have been quite var-
ious, such as the search of a valid model to describe foods in a hierarchical way
or the choice between two software tools to annotate WSDL file; the option of-
fered by SA-WSDL and WSDL-S, though strictly imposed by the search tool
used or the analysis of this very tool created by Eng. Prazzoli to understand
first problems and failures during tests. One of the major constraint, basically
bound to search tool and to consequent use of WSDL-S, has been imposed by



the modelReference attributes because of no multiple annotations allowed, thus
preventing a semantic description of web services selling multiple categories of
food, such as bread and milk at the same time. Although most of the mentioned
choices and solutions adopted during the development of this project have been
quite immediate some others required deeper considerations. The main purpose
of this project, which aimed at services annotation in order to improve searches
and make them easier, was based on the creation of an appropriate ontology; the
goal of offering web services, as adequate as possible with the actors’ require-
ments, has been pretty much fulfilled given the results of semantic searches.
This work can lead to further integrations or improvements, such as a simple
switch from WSDL-S to SAWSDL for annotations; this scenario would obviously
abstract away from the specific search tool used here and would not imply any
modifications to the ontology, but would lead to a more recent context in seman-
tic annotations. A second possible way of using this ontology can consist in its
expansion, integration or improvement depending on requirements and specific
detail level needed, for instance adding classes and/or subclasses or merging it
with other akin taxonomies/ontology.


