W S-Policy for Service Monitoring

L. Baresi, S. Guinea, and P. Plebani

Dipartimento di Elettronica ed Informazione
Politecnico di Milano
Piazza L. da Vinci, 32 - 20133 Milano (Italy)
bar esi | gui nea| pl ebani @l et.polim.it

Abstract. The paper presents a monitoring framework for WS-BPEL gees.

It proposes WS-Policy and WS-ColL (Web Service Constraimguage) as do-
main-independent languages for specifying the user reopgints (constraints)
on the execution of Web services compositions. These laygguprovide a uni-
form framework to accommodate both functional and non-fional constraints,

but the paper only addresses non-functional requiremgrgsncentrates on se-
curity, which is one of the most challenging QoS dimensiamstliis class of

applications.

1 Introduction

Originally, service-centricomputing relied on the simple and essential service-tgten
paradigm, where service providers, service users, anécsatirectories were the only
players. Recently, many proposals have tried to extendehdcg-oriented approach
with issues related to composition, conversation, moimitgorand management [5]. In
particular, this paper focuses on extending the basicifeatuith the capability of mon-
itoring the execution of composed Web services (i.e., WE&IBProcesses), as a way
to assess both their functional correctness and qualitefice. Monitoring should
address both functional and non-functional aspects anttririgolve different parties:
clients may be interested in probing the services they uswjgers may access the
services they offer, but also third party entities mightmeived to offer neutral moni-
toring capabilities and collect historical data.

The paper introduces a monitoring approach able to probe foeictional and non-
functional requirements. Functional requirements preion the correctness of the
information exchanged between the WS-BPEL orchestrathsalected services; non-
functional requirements are about the aspects directhtaelto how well the service
works in term of, for example, security, transactionafigtformance, and reliable mes-
saging. The capability of probing such a wide range of requénts imposes that the
execution be analyzed: (1) before invoking the service, ihabefore the message to
invoke it exists, (2) after producing the message, but lsefeaching the target service,
(3) before the return message reaches its destination4aadtér reaching it. The first
two cases cover the flow from the WS-BPEL orchestrator to dinget service, while
the other two cases deal with the opposite flow. Moreoveesasand 4 assume client-
side monitoring, while the other two cases are wider and ¢@éme options introduced
above.

2 L. Baresi, S. Guinea, and P. Plebani

The approach concentrates on client-side monitoring aliesren WS-Policy [3], the
emerging standard to define Web service requirements, t@gxgphanonitoring poli-
ciesassociated with WS-BPEL processes, that is, the user exgairts (constraints) on
running Web services compositions. All constraints aretemiin WS-CoL (Web Ser-
vice Constraint Language), a domain-independent langicaggonitoring assertions.
The paper also describes a prototype component, cilltedtoring Manageythat can
be used to extend existing platforms for service offering mwocatiort with monitor-
ing capabilities.

Even if the approach is general, the paper only addressefunctional aspects, and
specifically it concentrates on security, one of the mosiiehging QoS dimensions for
deploying Web services systems. The approach is exemptifiead simple case taken
from the common scenario of online book shopping. BookSkamionline bookshop
that uses a WS-BPEL process to coordinate all the steps thsttlve taken to interact
with its clients. Here, we concentrate on the service intionahe process makes to
OnlineBank to register credit-card transactions. We megthiat this invocation be en-
coded using the 3DES algorithm and be pursued only if thé ant@unt to be charged
is less than the amount defined in the user’s preferenceactnBookShop maintains
a repository of user preferences to simplify the procesauginy books and registers
the client’s credit-card and a money cap. A money cap is ligséfan a client wants to
avoid spending more than a certain amount of money in a straysaction.

The paper is organized as follows. Section 2 briefly discugise WS-Policy frame-
work and how related specifications can be used along the @felts life-cycle. Sec-
tion 3 introduces the monitoring approach adopted to chieelptoposed policies for
monitoring, and Section 4 presents the architecture of tbeitoring framework and
exemplifies how it works. Section 5 briefly surveys relategrapches and concludes
the paper.

2 WS-Palicy and WS-CoL

WS-Policy [3] is emerging as the standard way to describptbperties that character-
ize a Web service. By means of this specification, the funelidescription of a service
can be tied to a set of assertions that describe how the Welbesshould work in terms
of aspects like security, transactionality, and reliabksgsaging. According to [1], an
assertion is defined as “an individual preference, requergntapability or other prop-
erty”, and the WS-Policy documentis in charge of composiuth&ssertions to identify
how a Web service should work. These assertions can be usggress both functional
aspects (e.g., constraints on exchanged data), and notiefiual aspects (e.g., security,
transactionality, and message reliability). So far, a tewb languages, namely WS-
SecurityPolicy and WS-ReliableMessaging Policy, havenlpreposed as a set of WS-
Policy-compliant domain dependent assertions. Similavy propose WS-ColL (Web
Service Constraint Language), as domain-independentiégegto express monitoring
constraints.

As stated in [4], policies can be defined at different phaeed by several actors, of the
Web service life-cycle (Figure 1). Besides implementingalpplication, service devel-

! For example, existing service buses.

WS-Policy for Service Monitoring 3

opers also specify the properties that must hold during xkewdion independently of
the platform on which the services will be deployegrivice policies On the other
hand, service providers specify the features supportedidwypplication servers that
support the deployment of the servicesiiver policies The intersection of service and
server policies results isupported policieswhich define the properties of the services
deployed on a specific platform. Finally, Web service ustateghe features the ser-
vices they want to invoke should suppagquested policigs By combining requested
policies and supported policies, we obtain the so cadifelctive policiesthat is, the
set of assertions that specify the properties of a Web s=deployed on a particular
server and invoked by a specific user. The Web service to véffebtive policies apply
is linked by definition and it can be a simple Web service or aBVEL process. Once
effective policies are derived, services should be moedat runtime to guarantee that
they offer the service levels stated by their associateidips|

(Application
Server

; invokes .
Web service | Service User

’
’

effective
service policy
policy

requested
policy

\\D
{1

server supported
policy policy

Fig. 1. Ws-Policy definitions and attachments

WS-PolicyAttachment [2], one of the elements of the WS-&oliamework, supports
the scenario described above by introducing how a WS-Pdiegument can be tied
to an XML document that represents the subject for which ey holds. Notice
that the assertions included in the effective policy canfigdiad at different levels of
granularity: the whole process, a branch of execution, siGinvocation, a single
message, or a single internal variable. Hereafter, for kiityy we suppose that all
the effective policy assertions work at the same level amatenprecisely, at service
invocation level.

If the considered service is a WS-BPEL process, policiesbeaattached to some of
the service invocation activities. Figure 2 shows a possiffective policy attachmeht
where policyBook ShopPol i cy is applied to all the subjects identified by the XPath

2 Namespaces are not included for the sake of readability.

4 L. Baresi, S. Guinea, and P. Plebani

expression in th&bni t or edl t emtag. The type attribute specifies when the expres-
sions included in the policy must hold.

The effective policy, which must be satisfied when the crealitl is about to be charged,
is defined in the second part of Figure 2: Bmok ShopPol i cy states both functional
and non-functional properties. Non-functional requiratsémpose that all exchanged
messages be encrypted using 3DES as the encryption algofibnctional require-
ments impose that every time clients are ready to pay for th@oks, the order can-
not exceed the money cap. This last constraint is renderédéS+CoL included in the
Expr essi ontag: theanount of money of the current purchaséhiar geRequest)
must be less than or equal to threney Cap of the current user’s preferences).

1. Policy attachment:

<wsp: Pol i cyAttachnment xm ns:wsp="...">
<wsp: Appl i esTo xm ns: wsal ="...">
<wscol : Moni toredltems xnl ns:wscol ="...">

<wscol : Moni toredltemtype="precondition"
pat h=" XPATH expression to W5-BPEL i nvoked activity'/>
</wscol : Moni toredl tenms>
</ wsp: Appl i esTo>
<wsp: Pol i cyRef erence
URI ="htt p: // ww. bookshop. it/ polici es#BookShopPol i cy/ >
</wsp: Pol i cyAtt achment >

2. Policy definition:

<wsp: Policy xml :base="http://ww. bookshop.it/policies"
wsu: | d=" BookShopPol i cy"
xm ns: wsp="..."
xm ns:wsu="...">
<wsp: All xm ns:wsse="..."
xm ns:wscol ="...">
<wsse: Confidentiality>
<wsse: Al gorithmtype="wsse: Al gSi gnat ure"
URI ="htt p: //ww. W3. or g/ 2000/ 09/ xm enc#3des-cbhc"/ >
</wsse: Confidentiality>
<wscol : Expressi on>
Char geRequest . amount <= uP. noneyCap;
</wscol : Expressi on>
</wsp: Al >
</wsp: Pol i cy>

Fig. 2. Ws-Policy example

WS-CoL (Web Service Constraint Language) borrows manyeptsdrom JML. It dis-
tinguishes betweedata collectionanddata analysisData can come from the process
directly (e.g., input and output messages), but they cam @sne from any external

WS-Policy for Service Monitoring 5

source (e.g., exchanged SOAP messages, metering toolks)s Tiossible because of a
set of keywords representing ways of obtaining data froreree data sources. A dif-
ferent extension is introduced for each of the standard Xg@4 that can be returned
by external data collectordr et ur nl nt, \r et ur nBool ean, \returnString
provide data according to the specified format. These extensan be nested to make
a service filter (or compose) the data gathered from othecresuData analysis can be
carried out by different data analyzers. The WS-CoL corcsghtax can be translated
into different abstract representations that correspordifterent analysis engines. In
this paper, we concentrate on a specific engine implemersiadxl i nki t [10] and
CLi X[11].

3 Monitoring approach

Runtime monitors [6] are the “standard” solution to assksgjuality of running appli-
cations where suitable probes control the functional @bness and the satisfaction of
QoS parameters. Our monitoring approach borrows its grioagrfdom assertion lan-
guages, like Anna (Annotated Ada [7]) and JML (Java Modeliagguage [8]), and
proposes the use of special-purpose assertions to checkitextness/quality of run-
ning WS-BPEL processes. It is also based on the idea that wetaaeuse as much
existing technology as possible as means to increasefitsidif and acceptabilify

The tradeoff between monitoring and performance might flaenced by many dif-
ferent factors. We cannot define a strict relationship betw&'S-BPEL processes and
monitoring directives. Users must be free to change therapie with new and different
needs. For example, the execution of these processesenatiffcontexts might require
a heavier burden in terms of monitoring, while when selesedices are well-known
and reliable, users might decide to privilege performamcksalopt a looser monitoring
framework.

These considerations led us to propose monitoring dirests stand-alone (external)
monitoring policiesrendered in WS-Policy (see Section 2). These constraintsotlo
belong to the workflow description, that is, the WS-BPEL @x; but they are weaved
with it at deployment-time. Besides the gain in flexibilityith different sets of moni-
toring policies that can be associated with the same prptteéssolution also allows us
to keep a good separation between business and contratlogic

The weaving process is governed by BPEWhich instruments the original WS-BPEL
specification to make it apply the monitoring policies. The-processor parses all the
monitoring policies selected for the particular process. éach policy, the embedded
location indicates the point of the process in which BPBLbstitutes the WS-BPEL
invoke activity with a call to the monitor manager, whichhigh in charge of evaluating
the policy and call the service if it is the case. BPHElso adds an initial call to the
monitoring manager, to send the initial configuration (saslthe priority at which the
process is being run) to initialize it, and a final call to coomitate it has finished
executing the business logic and resources can be released.

% The current implementation of the approach as “externafiponent can be seen as a feasi-
bility study before embedding this technology in a stand&®-BPEL engine.

6 L. Baresi, S. Guinea, and P. Plebani

BPEL? produces a fully-compliant WS-BPEL specification, whicldéployed instead
of the original one. Monitoring policies are not actuallyartwined with the original
process. BPE only adds calls to the monitoring manager. This means tHatieecan
change without re-instrumenting the process. If locaticimnges, then BPELwould
produce a different specification.

After the weaving process at deployment-time, monitorialigies can be switched on
and off at runtime [9]. Special-purpose parameters, pikerity, allow the designer to
select those policies that are to be checked at run-timg (thest be a subset of those
selected at deployment time). Notice that the priority agged with monitoring poli-
cies must not be confused with theef er ence defined in the WS-Policy framework.
The preference defines the internal order among policiese e priority is used to
define if a policy must be monitored. For example, if a poliag priority lower than the
current one (i.e., the one set by the monitoring manages)pthnager skips its execu-
tion and calls the actual service directly. The monitoringnager, the component that
oversees the application of the monitoring policies, hasdiaghted user interface that
lets the designer change its current priority and thus nydgb# impact that monitoring
has on the execution dynamically.

4 Monitoring manager

The proposed monitoring component, calldnitoring Manager is simple and ex-
tensible —in terms of the data analyzers it can use for viagfyunctional and non-
functional properties at run-time. Simplicity has been sgho over other guidelines,
such as performance, due to its prototypical nature.Nlbaitoring Manageris com-
posed of four principal components (see Figure 3):Rnées Managerthe Configura-
tion Manager the External Monitors Manageand thelnvoker.

The UML sequence diagram of Figure 4 shows how such compsiieteract while
executing a WS-BPEL process if the monitoring of pre-cdodi is required. When
BPEL? produces the instrumented version of the process, it addstaai call to the
manager that sets up the monitoring activities by creatisyeific configuration in the
Configuration Manager. This configuration contains all tbkgpes that are selected for
the process.

After setup, the execution of the actual business logic cenuas. If the instrumented
process needs to invoke a service that must be monitoretydkés the Monitoring
Manager in its place. The manager is sent the data that are anddyzed and the in-
formation required to invoke the Web service that the man&sgerapping. The Rules
Manager extracts the expressions associated with thecedénviocation from the Con-
figuration Manager. In our example of Figure 2, an encrypgiolicy and a functional
pre-condition are associated with the OnlineBank servigedation. This means that
when the monitoring of these properties is requested bynstelimented process, their
appropriate expressions are extracted from the ConfigurdManager.

The pre-condition is a functional property that must be fiegtiprior to constructing
the SOAP message that must be sent to the OnlineBank sefieencryption policy
is a non-functional property that must be verified after tli3AB message has been

WS-Policy for Service Monitoring 7

Monitoring Manager ‘
Plugin Interface| CLiX
Monitor
Configuration Plugin
Manager !
Monitor A
Manager g
Interface External
2 .
BPEL [~ O GUTIEL | S > Monitors | ----~O——— Monitor
Manager . Plugin
Manager | Plugin Interface|
Invoker \
. .
o
Plugin Interface ug
?<~~~~~~~~‘ % B »(E
XPath Data SORLEldey CLiX Data
Data
Collector Analyzer
Collector

Fig. 3. Interaction with the Monitoring Manager

constructed and prior to sending it to the OnlineBank servitwe consider return
messages, the approach works similarly.

When a policy has to be checked, the Rules Manager startsrifgooding the policy’s
property with the global process execution priority. Tlsislone to decide whether the
policy should be monitored or if the requested monitorintivélg can be ignored. If
a policy is to be monitored, the Rules Manager analyzes tpeeggions to see if ad-
ditional data must be obtained prior to effective analyiadditional data is needed
(meaning ar eturnString, \returnl nt, etc. is present in the WS-CoL expres-
sion), the Invoker is called to interact with the specifietbexal data collectors. Once
all the data has been obtained, the Rules Manager asks ttapaippe external monitor
plugin to translate the WS-CoL expression and the data hmtddrmats the external
monitor (in this case the CLiX monitor) is capable of interijimg. Once this translation
is completed, the appropriate data analyzer is invokedlam&tiles Manager waits for
a response. If the response is that the property is valits @hthe case in Figure 4)
the Rules Manager proceeds by asking the Invoker compooealltthe Web Service
that would have been called originally. If the data analyrsponds by saying that the

8 L. Baresi, S. Guinea, and P. Plebani

% BPEL2 Rules Configuration Invoker Data Monitor Data Web
eor Manager Manager Collector lug-in Analyzer Service
1 1 1 1

initial setup. i
1
__initial setup
1

process

invocation
service

invocation

1
1
1
I
1
1
1
1
1
1
:
1
ask for !
1

pre-conditions !
invoke dalg collector

sk for
relevant data

1
1
1
1 1
translate ws-cgl expression |
1 1
1
t

1

validate pre-condition

—t —+-
1 1
I I
1 1
1
1 1
1 1
b T
1 1

invoke external' Web Service .

invoke
T
1

Fig. 4. Interactions among the main elements of the monitoring ig@na

property is not valid, a standard exception is raised tonk&umented process which
can then decide for some recovery strateyies

In our example, we can imagine the process execution prizrit4” while the moni-
toring rule’s priority is "5”. This means that the require@nitoring activity cannot be
ignored. The WS-CoL expression is extracted from the Cordigon Manager compo-
nent and the Rules Manager discovers that the amount of mitratyas to be charged
to the client’s credit-card, and the money cap that the thes set in his/her user pref-
erences are required. Both of these data originate in theimented process that is in
execution, and as such, have already been sent to the mahagey the request for
monitoring. No extra data collection is necessary. The Vé&-€xpression and the data
are translated into formats interpretable by the CLiX mmrdind sent to the appropriate
data analyzer that responds that everything is fine.

At this point the manager proceeds to the monitoring of théB@essage that is to
be sent to the OnlineBank service, to see if it is encryptest@ed in the encryption
policy (see the policy example in Figure 2), in other words\@$s3DES”. When the
instrumented version of the WS-BPEL process is createertbgyption policy is trans-
lated into WS-ColL format, to make it interpretable by the ager. In particular, the
policy is translated into two different WS-CoL expressiomse for the outgoing mes-
sage and one for the returning message. Both are sent to tiegeraduring the initial
setup phase and stored in the Configuration Manager. The W.Segpression for the
outgoing message is presented in Figure 5.

The WS-CoL expression makes use of two ne&teelt ur nSt ri ngs. The inner one
is used to ask the SOAP Builder Data Collector to produce anypted SOAP mes-
sage using the Encryption Policy stated in the initial Wdidydile, and the data re-
ceived from the instrumented process. Amongst these déte M/SDL of the service

4 Recovery strategies are not part of this paper and are aunefutork.

WS-Policy for Service Monitoring 9

<wscol : Expressi on>
\returnString(WSDL_XPATH, appl yXPATH,
"\\ Envel ope\ body\ Encr ypt edDat a\ Encr ypti onMet hod\ @\ gorit hmi,
\returnString(WSDL_SOAP_DC, get SOAP,
" BookShopPolicy', 'Data’)
) == "http://ww.w3. org/ 2000/ 09/ xm enc#3des-chc’;
</ wscol : Expr essi on>

Fig.5. WS-CoL encryption expression for the outgoing message

that must be invoked with the encrypted message. This isattfed understanding the
structure of the SOAP message that has to be built. The puétrur nSt r i ng, on the
other hand, is used to extract a value (the location of whidpecified using an XPath
expression) contained in the header of the just built SOABsage. In the meanwhile,
the encrypted SOAP message, as built by the SOAP Builder Daliactor, is kept
untouched in the Invoker component. This prevents it froindpenodified by anyone,
which is fundamental since it represents the actual messagevill be sent to On-
lineBank, once its correct encryption is proven. The vakteagted by the XPath Data
Collector is finally confronted with "3DES” by the CLiX Datarralyzer. If the message
results to be encrypted correctly, the Invoker is instrd¢teforward the message it has
been holding to the OnlineBank service. If the message i®notypted correctly, an
exception is raised and passed to the instrumented process.

The return message received by OnlineBank must also be oneditor correct encryp-
tion. Once the return message has been received by the hreakgonent, it is copied
and passed to the XPATH Data Collector which extracts thddreglement to confront
it with "3DES”. Once again a WS-CoL expression containirig @t ur nSt ri ng call

to the XPath Data Collector is used. The extracted valuetharepassed to the CLiX
Data Analyzer. If the message results to be correctly enedyjit is passed to the SOAP
Builder for decryption, after which the result of the dedigp is finally forwarded to
the instrumented process. If the message is not correathypted, the usual exception
is raised and passed to the instrumented process.

Generally speaking, given a generic WS-Policy assertiobetanonitored, if a data
source able to identify the effects of such an assertiortgxige can derive a Ws-Col
expression. So, a WS-Policy assertion results in an exiprekise the one presented in
Figure 5. This expression drives the monitoring managetatie $f the non-functional
properties the user requires are satisfied.

5 Conclusions and future work

Lack of space precludes a thorough survey of all the appesaittat address Web ser-
vices monitoring. Here, we only concentrate on some releniiatives.

Even if WSDL represents the standard way to define what a Weficeedoes, many
efforts are now focusing on languages able to complete suldseription by consid-
ering aspects not directly related to how a service shouldvaked. WS-Policy, and
all the other languages included in the WS-Policy framewagresent one of the most

10 L. Baresi, S. Guinea, and P. Plebani

well-known attempts and, due to its flexibility, it could beandidate to become the
future standard. For these reasons, in this work, we decdmledtend the WS-Policy
framework by proposing WS-CoL, as domain-independentasadanguage.
Similarly, WSLA [12] and WS-Agreement [13] propose domaidependent frame-
works capable of collecting properties. Also RuleML [14hdae used to express con-
straints in terms of facts and rules.

This paper is only a first proposal to embed monitoring divestinto policies. The first
implementation of the Monitoring Manager and the experitaavith the (complete)
example presented in this paper gave promising resultshbwtpproach needs further
analysis and a wider set of case studies to fully assess utsdsess. Rules driving
the automatic translations from WS-Policy assertions teGdkexpressions are under
development. All these activities are facilitated by thaikability of the monitoring
framework.

References

1. A. Nadalin (ed.). Web Services Policy Assertions Langu@lyS-PolicyAssertions)wawv.
i bm com devel operworks/ i brary/ ws- pol as/,May 2003.

2. C. Sharp (ed.). Web Services Policy Attachment (WS-Ratimchment).www 128.

i bm com devel operworks/|ibrary/specification/ws-polatt/, Septem-
ber 2004.

3. J. Schlimmer (ed.). Web Services Policy Framework (W&clPoFramework).
www. i bm cont devel operwor ks/ i brary/ specification/ws-polfrani,
September 2004.

4. N. Mukhi, P. Plebani, T. Mikalsen, and I. Silva-Lepe. Soging Policy-driven behaviors in
Web services: Experiences and Issue®rceedings of the Second International Conference
on Service Oriented Computing (ICSOC2QMdgw York, NY, USA, 2004.

5. M. P. Papazoglou and G. Georgakopoulos. Service-odesumputing: IntroductionCom-
munication ACM46(10):24-28, 2003.

6. N. Delgado, A.Q. Gates and S. Roach. A Taxonomy and CatdIBgintime Software-Fault
Monitoring Tools . IEEE Transactions on software Engineerjnmges 859-872, December,
2004.

7. D.C. Luckham. Programming with Specifications: An Introtion to Anna, A Language for
Specifying Ada Programslexts and Monographs in Computer Scier@et 1990.

8. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. PrelamynDesign of JML: A Behav-
ioral Interface Specification Language for JalZeepartment of Computer Science, lowa State
University, TR 98-06-rev2 April, 2005.

9. L. Baresi, C. Ghezzi and S. Guinea. Smart Monitors for Gased Servicesdn Proceedings
of the 2nd International Conference on Service Oriented @ging 2004.

10. Xlinklt: A Consistency Checking and Smart Link GeneyatService. ACM Transactions
on Software Engineering and Methodologpages 151-185, May 2002.

11. CLiX: Constraint Language in XMLww. ¢l i xm . org/clix/ 1.0/.

12. A. Keller and H. Ludwig. The WSLA Framework: SpecifyingdaMonitoring Service Level
Agreements for Web Services. Technical Report RC22456Q0802Z1), IBM Research Di-
vision, T.J. Watson Research Center, May 2002.

13. Web Services Agreement Specification (WS-Agreemeri)52 ws. apache. or g/
wsi f/.

14. The Rule Markup Initiativesw. df ki . uni - kl . de/rul em /.

