
WS-Policy for Service Monitoring

L. Baresi, S. Guinea, and P. Plebani

Dipartimento di Elettronica ed Informazione
Politecnico di Milano

Piazza L. da Vinci, 32 - 20133 Milano (Italy)
baresi|guinea|plebani@elet.polimi.it

Abstract. The paper presents a monitoring framework for WS-BPEL processes.
It proposes WS-Policy and WS-CoL (Web Service Constraint Language) as do-
main-independent languages for specifying the user requirements (constraints)
on the execution of Web services compositions. These languages provide a uni-
form framework to accommodate both functional and non-functional constraints,
but the paper only addresses non-functional requirements.It concentrates on se-
curity, which is one of the most challenging QoS dimensions for this class of
applications.

1 Introduction

Originally,service-centriccomputing relied on the simple and essential service-oriented
paradigm, where service providers, service users, and service directories were the only
players. Recently, many proposals have tried to extend the service-oriented approach
with issues related to composition, conversation, monitoring, and management [5]. In
particular, this paper focuses on extending the basic features with the capability of mon-
itoring the execution of composed Web services (i.e., WS-BPEL processes), as a way
to assess both their functional correctness and quality of service. Monitoring should
address both functional and non-functional aspects and might involve different parties:
clients may be interested in probing the services they use, providers may access the
services they offer, but also third party entities might be involved to offer neutral moni-
toring capabilities and collect historical data.
The paper introduces a monitoring approach able to probe both functional and non-
functional requirements. Functional requirements predicate on the correctness of the
information exchanged between the WS-BPEL orchestrator and selected services; non-
functional requirements are about the aspects directly related to how well the service
works in term of, for example, security, transactionality,performance, and reliable mes-
saging. The capability of probing such a wide range of requirements imposes that the
execution be analyzed: (1) before invoking the service, that is, before the message to
invoke it exists, (2) after producing the message, but before reaching the target service,
(3) before the return message reaches its destination, and (4) after reaching it. The first
two cases cover the flow from the WS-BPEL orchestrator to the target service, while
the other two cases deal with the opposite flow. Moreover, cases 1 and 4 assume client-
side monitoring, while the other two cases are wider and opento the options introduced
above.

2 L. Baresi, S. Guinea, and P. Plebani

The approach concentrates on client-side monitoring and relies on WS-Policy [3], the
emerging standard to define Web service requirements, to express themonitoring poli-
ciesassociated with WS-BPEL processes, that is, the user requirements (constraints) on
running Web services compositions. All constraints are written in WS-CoL (Web Ser-
vice Constraint Language), a domain-independent languagefor monitoring assertions.
The paper also describes a prototype component, calledMonitoring Manager, that can
be used to extend existing platforms for service offering and invocation1 with monitor-
ing capabilities.
Even if the approach is general, the paper only addresses non-functional aspects, and
specifically it concentrates on security, one of the most challenging QoS dimensions for
deploying Web services systems. The approach is exemplifiedon a simple case taken
from the common scenario of online book shopping. BookShop is an online bookshop
that uses a WS-BPEL process to coordinate all the steps that must be taken to interact
with its clients. Here, we concentrate on the service invocation the process makes to
OnlineBank to register credit-card transactions. We require that this invocation be en-
coded using the 3DES algorithm and be pursued only if the total amount to be charged
is less than the amount defined in the user’s preferences. In fact, BookShop maintains
a repository of user preferences to simplify the process of buying books and registers
the client’s credit-card and a money cap. A money cap is useful when a client wants to
avoid spending more than a certain amount of money in a singletransaction.
The paper is organized as follows. Section 2 briefly discusses the WS-Policy frame-
work and how related specifications can be used along the Web service life-cycle. Sec-
tion 3 introduces the monitoring approach adopted to check the proposed policies for
monitoring, and Section 4 presents the architecture of the monitoring framework and
exemplifies how it works. Section 5 briefly surveys related approaches and concludes
the paper.

2 WS-Policy and WS-CoL

WS-Policy [3] is emerging as the standard way to describe theproperties that character-
ize a Web service. By means of this specification, the functional description of a service
can be tied to a set of assertions that describe how the Web service should work in terms
of aspects like security, transactionality, and reliable messaging. According to [1], an
assertion is defined as “an individual preference, requirement, capability or other prop-
erty”, and the WS-Policy document is in charge of composing such assertions to identify
how a Web service should work. These assertions can be used toexpress both functional
aspects (e.g., constraints on exchanged data), and non-functional aspects (e.g., security,
transactionality, and message reliability). So far, a couple of languages, namely WS-
SecurityPolicy and WS-ReliableMessaging Policy, have been proposed as a set of WS-
Policy-compliant domain dependent assertions. Similarly, we propose WS-CoL (Web
Service Constraint Language), as domain-independent language to express monitoring
constraints.
As stated in [4], policies can be defined at different phases,and by several actors, of the
Web service life-cycle (Figure 1). Besides implementing the application, service devel-

1 For example, existing service buses.

WS-Policy for Service Monitoring 3

opers also specify the properties that must hold during the execution independently of
the platform on which the services will be deployed (service policies). On the other
hand, service providers specify the features supported by the application servers that
support the deployment of the services (server policies). The intersection of service and
server policies results insupported policies, which define the properties of the services
deployed on a specific platform. Finally, Web service users state the features the ser-
vices they want to invoke should support (requested policies). By combining requested
policies and supported policies, we obtain the so calledeffective policies, that is, the
set of assertions that specify the properties of a Web service deployed on a particular
server and invoked by a specific user. The Web service to whicheffective policies apply
is linked by definition and it can be a simple Web service or a WS-BPEL process. Once
effective policies are derived, services should be monitored at runtime to guarantee that
they offer the service levels stated by their associated policies.A p p l i c a t i o nS e r v e r W e b s e r v i c e S e r v i c e U s e ri n v o k e ss e r v i c ep o l i c y r e q u e s t e dp o l i c ys e r v e rp o l i c y s u p p o r t e dp o l i c y

e f f e c t i v ep o l i c y
∩ ∩

Fig. 1. Ws-Policy definitions and attachments

WS-PolicyAttachment [2], one of the elements of the WS-Policy framework, supports
the scenario described above by introducing how a WS-Policydocument can be tied
to an XML document that represents the subject for which the policy holds. Notice
that the assertions included in the effective policy can be applied at different levels of
granularity: the whole process, a branch of execution, a service invocation, a single
message, or a single internal variable. Hereafter, for simplicity, we suppose that all
the effective policy assertions work at the same level and, more precisely, at service
invocation level.
If the considered service is a WS-BPEL process, policies canbe attached to some of
the service invocation activities. Figure 2 shows a possible effective policy attachment2,
where policyBookShopPolicy is applied to all the subjects identified by the XPath

2 Namespaces are not included for the sake of readability.

4 L. Baresi, S. Guinea, and P. Plebani

expression in theMonitoredItem tag. The type attribute specifies when the expres-
sions included in the policy must hold.
The effective policy, which must be satisfied when the creditcard is about to be charged,
is defined in the second part of Figure 2: theBookShopPolicy states both functional
and non-functional properties. Non-functional requirements impose that all exchanged
messages be encrypted using 3DES as the encryption algorithm. Functional require-
ments impose that every time clients are ready to pay for their books, the order can-
not exceed the money cap. This last constraint is rendered inWS-CoL included in the
Expression tag: theamount of money of the current purchase (ChargeRequest)
must be less than or equal to themoneyCap of the current user’s preferences (uP).

1. Policy attachment:

<wsp:PolicyAttachment xmlns:wsp="...">
<wsp:AppliesTo xmlns:wsal="...">
<wscol:MonitoredItems xmlns:wscol="...">

<wscol:MonitoredItem type="precondition"
path=’XPATH expression to WS-BPEL invoked activity’/>

</wscol:MonitoredItems>
</wsp:AppliesTo>
<wsp:PolicyReference

URI="http://www.bookshop.it/policies#BookShopPolicy/>
</wsp:PolicyAttachment>

2. Policy definition:

<wsp:Policy xml:base="http://www.bookshop.it/policies"
wsu:Id="BookShopPolicy"

xmlns:wsp="..."
xmlns:wsu="...">

<wsp:All xmlns:wsse="..."
xmlns:wscol="...">

<wsse:Confidentiality>
<wsse:Algorithm type="wsse:AlgSignature"

URI="http://www.w3.org/2000/09/xmlenc#3des-cbc"/>
</wsse:Confidentiality>
<wscol:Expression>

ChargeRequest.amount <= uP.moneyCap;
</wscol:Expression>

</wsp:All>
</wsp:Policy>

Fig. 2. Ws-Policy example

WS-CoL (Web Service Constraint Language) borrows many concepts from JML. It dis-
tinguishes betweendata collectionanddata analysis. Data can come from the process
directly (e.g., input and output messages), but they can also come from any external

WS-Policy for Service Monitoring 5

source (e.g., exchanged SOAP messages, metering tools). This is possible because of a
set of keywords representing ways of obtaining data from external data sources. A dif-
ferent extension is introduced for each of the standard XSD types that can be returned
by external data collectors:\returnInt, \returnBoolean, \returnString
provide data according to the specified format. These extensions can be nested to make
a service filter (or compose) the data gathered from other sources. Data analysis can be
carried out by different data analyzers. The WS-CoL concrete syntax can be translated
into different abstract representations that correspond to different analysis engines. In
this paper, we concentrate on a specific engine implemented usingxlinkit [10] and
CLiX [11].

3 Monitoring approach

Runtime monitors [6] are the “standard” solution to assess the quality of running appli-
cations where suitable probes control the functional correctness and the satisfaction of
QoS parameters. Our monitoring approach borrows its grounding from assertion lan-
guages, like Anna (Annotated Ada [7]) and JML (Java ModelingLanguage [8]), and
proposes the use of special-purpose assertions to check thecorrectness/quality of run-
ning WS-BPEL processes. It is also based on the idea that we want to reuse as much
existing technology as possible as means to increase its diffusion and acceptability3.
The tradeoff between monitoring and performance might be influenced by many dif-
ferent factors. We cannot define a strict relationship between WS-BPEL processes and
monitoring directives. Users must be free to change them to cope with new and different
needs. For example, the execution of these processes in different contexts might require
a heavier burden in terms of monitoring, while when selectedservices are well-known
and reliable, users might decide to privilege performance and adopt a looser monitoring
framework.
These considerations led us to propose monitoring directives as stand-alone (external)
monitoring policiesrendered in WS-Policy (see Section 2). These constraints donot
belong to the workflow description, that is, the WS-BPEL process, but they are weaved
with it at deployment-time. Besides the gain in flexibility,with different sets of moni-
toring policies that can be associated with the same process, this solution also allows us
to keep a good separation between business and control logics.
The weaving process is governed by BPEL2, which instruments the original WS-BPEL
specification to make it apply the monitoring policies. The pre-processor parses all the
monitoring policies selected for the particular process. For each policy, the embedded
location indicates the point of the process in which BPEL2 substitutes the WS-BPEL
invoke activity with a call to the monitor manager, which is then in charge of evaluating
the policy and call the service if it is the case. BPEL2 also adds an initial call to the
monitoring manager, to send the initial configuration (suchas the priority at which the
process is being run) to initialize it, and a final call to communicate it has finished
executing the business logic and resources can be released.

3 The current implementation of the approach as “external” component can be seen as a feasi-
bility study before embedding this technology in a standardWS-BPEL engine.

6 L. Baresi, S. Guinea, and P. Plebani

BPEL2 produces a fully-compliant WS-BPEL specification, which isdeployed instead
of the original one. Monitoring policies are not actually intertwined with the original
process. BPEL2 only adds calls to the monitoring manager. This means that policies can
change without re-instrumenting the process. If locationschanges, then BPEL2 would
produce a different specification.
After the weaving process at deployment-time, monitoring policies can be switched on
and off at runtime [9]. Special-purpose parameters, likepriority, allow the designer to
select those policies that are to be checked at run-time (they must be a subset of those
selected at deployment time). Notice that the priority associated with monitoring poli-
cies must not be confused with thepreference defined in the WS-Policy framework.
The preference defines the internal order among policies, while the priority is used to
define if a policy must be monitored. For example, if a policy has priority lower than the
current one (i.e., the one set by the monitoring manager), the manager skips its execu-
tion and calls the actual service directly. The monitoring manager, the component that
oversees the application of the monitoring policies, has a dedicated user interface that
lets the designer change its current priority and thus modify the impact that monitoring
has on the execution dynamically.

4 Monitoring manager

The proposed monitoring component, calledMonitoring Manager, is simple and ex-
tensible —in terms of the data analyzers it can use for verifying functional and non-
functional properties at run-time. Simplicity has been chosen over other guidelines,
such as performance, due to its prototypical nature. TheMonitoring Manageris com-
posed of four principal components (see Figure 3): theRules Manager, theConfigura-
tion Manager, theExternal Monitors Managerand theInvoker.
The UML sequence diagram of Figure 4 shows how such components interact while
executing a WS-BPEL process if the monitoring of pre-conditions is required. When
BPEL2 produces the instrumented version of the process, it adds aninitial call to the
manager that sets up the monitoring activities by creating aspecific configuration in the
Configuration Manager. This configuration contains all the policies that are selected for
the process.
After setup, the execution of the actual business logic commences. If the instrumented
process needs to invoke a service that must be monitored, it invokes the Monitoring
Manager in its place. The manager is sent the data that are to be analyzed and the in-
formation required to invoke the Web service that the manager is wrapping. The Rules
Manager extracts the expressions associated with the service invocation from the Con-
figuration Manager. In our example of Figure 2, an encryptionpolicy and a functional
pre-condition are associated with the OnlineBank service invocation. This means that
when the monitoring of these properties is requested by the instrumented process, their
appropriate expressions are extracted from the Configuration Manager.
The pre-condition is a functional property that must be verified prior to constructing
the SOAP message that must be sent to the OnlineBank service.The encryption policy
is a non-functional property that must be verified after the SOAP message has been

WS-Policy for Service Monitoring 7M o n i t o r i n g M a n a g e r C L i XM o n i t o rP l u g i nM o n i t o rP l u g i nM o n i t o rP l u g i n
E x t e r n a lM o n i t o r sM a n a g e r

C o n fi g u r a t i o nM a n a g e r
I n v o k e rR u l e sM a n a g e rM o n i t o rM a n a g e rI n t e r f a c e

P l u g i n I n t e r f a c e
P l u g i n I n t e r f a c e
P l u g i n I n t e r f a c e

X P a t h D a t aC o l l e c t o r S O A P B u i l d e rD a t aC o l l e c t o r

B P E L 2

C L i X D a t aA n a l y z e r
Fig. 3. Interaction with the Monitoring Manager

constructed and prior to sending it to the OnlineBank service. If we consider return
messages, the approach works similarly.

When a policy has to be checked, the Rules Manager starts by confronting the policy’s
property with the global process execution priority. This is done to decide whether the
policy should be monitored or if the requested monitoring activity can be ignored. If
a policy is to be monitored, the Rules Manager analyzes the expressions to see if ad-
ditional data must be obtained prior to effective analysis.If additional data is needed
(meaning a\returnString, \returnInt, etc. is present in the WS-CoL expres-
sion), the Invoker is called to interact with the specified external data collectors. Once
all the data has been obtained, the Rules Manager asks the appropriate external monitor
plugin to translate the WS-CoL expression and the data into the formats the external
monitor (in this case the CLiX monitor) is capable of interpreting. Once this translation
is completed, the appropriate data analyzer is invoked and the Rules Manager waits for
a response. If the response is that the property is valid, (this is the case in Figure 4)
the Rules Manager proceeds by asking the Invoker component to call the Web Service
that would have been called originally. If the data analyzerresponds by saying that the

8 L. Baresi, S. Guinea, and P. Plebaniu s e r B P E L 2 R u l e sM a n a g e r C o n fi g u r a t i o nM a n a g e r I n v o k e r D a t aC o l l e c t o r M o n i t o rp l u g d i n D a t aA n a l y z e r W e bS e r v i c ei n i t i a l s e t u p i n i t i a l s e t u pp r o c e s si n v o c a t i o n a s k f o rp r e z c o n d i t i o n ss e r v i c ei n v o c a t i o n i n v o k e d a t a c o l l e c t o r a s k f o rr e l e v a n t d a t ar e t u r n r e l e v a n t d a t at r a n s l a t e w s z c o l e x p r e s s i o nv a l i d a t e p r e z c o n d i t i o ni n v o k e e x t e r n a l W e b S e r v i c e i n v o k e
Fig. 4. Interactions among the main elements of the monitoring manager

property is not valid, a standard exception is raised to the instrumented process which
can then decide for some recovery strategies4.
In our example, we can imagine the process execution priority is ”4” while the moni-
toring rule’s priority is ”5”. This means that the required monitoring activity cannot be
ignored. The WS-CoL expression is extracted from the Configuration Manager compo-
nent and the Rules Manager discovers that the amount of money, that has to be charged
to the client’s credit-card, and the money cap that the client has set in his/her user pref-
erences are required. Both of these data originate in the instrumented process that is in
execution, and as such, have already been sent to the managerduring the request for
monitoring. No extra data collection is necessary. The WS-CoL expression and the data
are translated into formats interpretable by the CLiX monitor and sent to the appropriate
data analyzer that responds that everything is fine.
At this point the manager proceeds to the monitoring of the SOAP message that is to
be sent to the OnlineBank service, to see if it is encrypted asstated in the encryption
policy (see the policy example in Figure 2), in other words using ”3DES”. When the
instrumented version of the WS-BPEL process is created, theencryption policy is trans-
lated into WS-CoL format, to make it interpretable by the manager. In particular, the
policy is translated into two different WS-CoL expressions, one for the outgoing mes-
sage and one for the returning message. Both are sent to the manager during the initial
setup phase and stored in the Configuration Manager. The WS-CoL expression for the
outgoing message is presented in Figure 5.
The WS-CoL expression makes use of two nested\returnStrings. The inner one
is used to ask the SOAP Builder Data Collector to produce an encrypted SOAP mes-
sage using the Encryption Policy stated in the initial WS-Policy file, and the data re-
ceived from the instrumented process. Amongst these data isthe WSDL of the service

4 Recovery strategies are not part of this paper and are our future work.

WS-Policy for Service Monitoring 9

<wscol:Expression>
\returnString(WSDL_XPATH, applyXPATH,

’\\Envelope\body\EncryptedData\EncryptionMethod\@Algorithm’,
\returnString(WSDL_SOAP_DC, getSOAP,

’BookShopPolicy’, ’Data’)
) == ’http://www.w3.org/2000/09/xmlenc#3des-cbc’;

</wscol:Expression>

Fig. 5. WS-CoL encryption expression for the outgoing message

that must be invoked with the encrypted message. This is needed for understanding the
structure of the SOAP message that has to be built. The outer\returnString, on the
other hand, is used to extract a value (the location of which is specified using an XPath
expression) contained in the header of the just built SOAP message. In the meanwhile,
the encrypted SOAP message, as built by the SOAP Builder DataCollector, is kept
untouched in the Invoker component. This prevents it from being modified by anyone,
which is fundamental since it represents the actual messagethat will be sent to On-
lineBank, once its correct encryption is proven. The value extracted by the XPath Data
Collector is finally confronted with ”3DES” by the CLiX Data Analyzer. If the message
results to be encrypted correctly, the Invoker is instructed to forward the message it has
been holding to the OnlineBank service. If the message is notencrypted correctly, an
exception is raised and passed to the instrumented process.
The return message received by OnlineBank must also be monitored for correct encryp-
tion. Once the return message has been received by the Invoker component, it is copied
and passed to the XPATH Data Collector which extracts the header element to confront
it with ”3DES”. Once again a WS-CoL expression containing a\returnString call
to the XPath Data Collector is used. The extracted values arethen passed to the CLiX
Data Analyzer. If the message results to be correctly encrypted, it is passed to the SOAP
Builder for decryption, after which the result of the decryption is finally forwarded to
the instrumented process. If the message is not correctly encrypted, the usual exception
is raised and passed to the instrumented process.
Generally speaking, given a generic WS-Policy assertion tobe monitored, if a data
source able to identify the effects of such an assertion exists, we can derive a Ws-Col
expression. So, a WS-Policy assertion results in an expression like the one presented in
Figure 5. This expression drives the monitoring manager to state if the non-functional
properties the user requires are satisfied.

5 Conclusions and future work

Lack of space precludes a thorough survey of all the approaches that address Web ser-
vices monitoring. Here, we only concentrate on some relevant initiatives.
Even if WSDL represents the standard way to define what a Web service does, many
efforts are now focusing on languages able to complete such adescription by consid-
ering aspects not directly related to how a service should beinvoked. WS-Policy, and
all the other languages included in the WS-Policy framework, represent one of the most

10 L. Baresi, S. Guinea, and P. Plebani

well-known attempts and, due to its flexibility, it could be acandidate to become the
future standard. For these reasons, in this work, we decidedto extend the WS-Policy
framework by proposing WS-CoL, as domain-independent assertion language.
Similarly, WSLA [12] and WS-Agreement [13] propose domain-independent frame-
works capable of collecting properties. Also RuleML [14] can be used to express con-
straints in terms of facts and rules.
This paper is only a first proposal to embed monitoring directives into policies. The first
implementation of the Monitoring Manager and the experiments with the (complete)
example presented in this paper gave promising results, butthe approach needs further
analysis and a wider set of case studies to fully assess its soundness. Rules driving
the automatic translations from WS-Policy assertions to Ws-Col expressions are under
development. All these activities are facilitated by the availability of the monitoring
framework.

References

1. A. Nadalin (ed.). Web Services Policy Assertions Language (WS-PolicyAssertions).www.
ibm.com/developerworks/library/ws-polas/, May 2003.

2. C. Sharp (ed.). Web Services Policy Attachment (WS-PolicyAttachment).www-128.
ibm.com/developerworks/library/specification/ws-polatt/, Septem-
ber 2004.

3. J. Schlimmer (ed.). Web Services Policy Framework (WS-Policy Framework).
www.ibm.com/developerworks/library/specification/ws-polfram/,
September 2004.

4. N. Mukhi, P. Plebani, T. Mikalsen, and I. Silva-Lepe. Supporting Policy-driven behaviors in
Web services: Experiences and Issues. InProceedings of the Second International Conference
on Service Oriented Computing (ICSOC2004), New York, NY, USA, 2004.

5. M. P. Papazoglou and G. Georgakopoulos. Service-oriented computing: Introduction.Com-
munication ACM, 46(10):24–28, 2003.

6. N. Delgado, A.Q. Gates and S. Roach. A Taxonomy and Catalogof Runtime Software-Fault
Monitoring Tools . IEEE Transactions on software Engineering, pages 859-872, December,
2004.

7. D.C. Luckham. Programming with Specifications: An Introduction to Anna, A Language for
Specifying Ada Programs.Texts and Monographs in Computer Science, Oct 1990.

8. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design of JML: A Behav-
ioral Interface Specification Language for Java.Department of Computer Science, Iowa State
University, TR 98-06-rev27, April, 2005.

9. L. Baresi, C. Ghezzi and S. Guinea. Smart Monitors for Composed Services.In Proceedings
of the 2nd International Conference on Service Oriented Computing, 2004.

10. XlinkIt: A Consistency Checking and Smart Link Generation Service.ACM Transactions
on Software Engineering and Methodology, pages 151–185, May 2002.

11. CLiX: Constraint Language in XML.www.clixml.org/clix/1.0/.
12. A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services. Technical Report RC22456(W0205-171), IBM Research Di-
vision, T.J. Watson Research Center, May 2002.

13. Web Services Agreement Specification (WS-Agreement), 2005. ws.apache.org/
wsif/.

14. The Rule Markup Initiative.www.dfki.uni-kl.de/ruleml/.

