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URBE: Web service Retrieval based on
Similarity Evaluation

Pierluigi Plebani and Barbara Pernici

Abstract—In this work we present URBE (Uddi Registry By Example), a novel approach for Web service retrieval based on the
evaluation of similarity between Web service interfaces. Our approach assumes that the Web service interfaces are defined with
WSDL (Web Service Description Language) and the algorithm combines the analysis of their structures and the analysis of the terms
used inside them. The higher the similarity, the less the differences there are among their interfaces. As a consequence, URBE is
useful when we need to find a Web service suitable to replace an existing one that fails. Especially in autonomic systems, this situation
is very common since we need to ensure the self-management, the self-configuration, the self-optimization, the self-healing, and the
self-protection of the application that is based on the failed Web service. A semantic-oriented variant of the approach is also proposed,
where we take advantage of annotations semantically enriching WSDL specifications. SAWSDL (Semantic Annotation for WSDL) is
adopted as a language to annotate a WSDL description. The URBE approach has been implemented in a prototype that extends a
UDDI (Universal Description, Discovery and Integration) compliant Web service registry.

Index Terms—Web-based services, Information Search and Retrieval, WSDL/SAWSDL, similarity
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1 INTRODUCTION

S ERVICE Oriented Computing aims to provide a set
of methods and tools to support the design and

the execution of applications based on Web services.
According to this paradigm, at design-time developers
identify which activity is to be performed and then try to
find and select the Web services closest to such require-
ments. In some cases such requirements can be figured
out only at run-time, and specific modules are involved
to perform the discovery and selection activities. This
is the typical scenario in which automatic composition
techniques and self-healing systems work.

Analyzing the literature, we can identify two main
kinds of Web service retrieval approaches with respect
to the way in which the Web services are described. On
one hand, we have solutions, such as UDDI (Univer-
sal Description, Discovery and Integration) and ebXML
(Electronic Business using XML) Registries, where Web
service description documents are indexed according
to keywords or pre-defined taxonomies. Regardless of
the way in which the Web service is described, these
registries do not exploit the content of the Web service
description documents during retrieval. On the other
hand, the Semantic Web community proposes solutions,
such as OWL-S (Semantic Markup for Web Services)
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and WSMO (Web Service Modeling Ontology), in which
Web services are organized in ontologies. In this case,
exploiting the information included in the Web service
descriptions, a reasoning process takes place during the
Web service matching. Even if the semantic-oriented
approaches to match Web services are more effective [1],
they do not usually consider the structure of the Web
service interfaces and the effort required to semanti-
cally describe the Web services is considerable. On the
contrary, matching should consider that a Web service
description based on WSDL (Web Services Description
Language) [2], the most adopted Web service description
model, can be easily and often automatically generated
starting from the Web service code.

The goal of this work is to propose URBE (Uddi
Registry By Example): a novel and effective Web service
retrieval algorithm for substitution purpose, based on
WSDL, as the model to define the Web service inter-
faces. Web service substitution can be performed both
at design-time and at run-time and might occur, for
instance, in case of Web service failures, or in case of Web
service is unreachable. This scenario becomes very com-
mon in autonomic systems where we need to ensure self-
management, self-configuration, self-optimization, self-
healing, and self-protection of the applications [3]. To
make substitution possible, the substitute Web service
has to expose an interface which is equal or richer than
the interface of the failed Web service.

Fig. 1 shows the interfaces of two similar Web services.
In this case, even if they fulfill the same goal, i.e.,
currency exchange, the number of available operations,
as well as the way in which the input and output
parameters are named, is different. Since one of our
goal is to evaluate the similarity for substitutability, we
need to consider that substituting CurrencyWS with
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CurrencyExchangeService is different than the op-
posite. Indeed, if we usually invoke the CurrencyWS,
in case of failure we can start invoking the correspond-
ing operation of the CurrencyExchangeService after
implementing a mediator able to transform the mes-
sages: skipping the value of the license number, i.e.
LicNumber, obtaining the country name from the re-
lated currency symbol, and modifying the name of the
invoked operation and the parameters. On the contrary,
if we are using CurrencyExchangeService and we
have to switch to CurrencyWS, the new Web service
needs an additional parameter that could be obtained
by payment of registration fees, i.e., LicNumber.

In this work we propose an algorithm able to eval-
uate the similarity degree between two Web services
by comparing the related WSDL descriptions. Such an
evaluation reflects how much will be the effort in case
a Web service should be substitute with another one in
terms of re-coding the client-side. The approach takes
into account the relationships between the main ele-
ments composing a WSDL description (i.e., portType,
operation, message, and part) and, if available, the an-
notations included in a SAWSDL (Semantic Annotated
WSDL) file [4]. In this way, the semantic matching can
be improved and, consequently, the performance of our
approach improves as well. Mechanisms for actually
building a mediation layer between two Web services
having similar WSDL are out of the scope of this paper,
as well as mechanisms for substituting failed Web ser-
vices and for composing several Web services to obtain
a required interface.

A prototype of URBE, as an enhanced UDDI Registry
supporting content-based queries, has been developed.
Besides the possibility of finding a substitute for a
failed Web service, URBE can be also useful during
the WS-BPEL (Web Services Business Process Execution
Language) processes top-down design. In traditional
design approaches the designer starts to identify the
potential partners and then the WS-BPEL process is
defined starting from the interfaces of the selected Web
services (bottom-up approach). With URBE, the designer
can initially focus on the process definition and then
the Web services which are able to perform the required
invocations can be discovered.

Our approach has been inspired by the literature in
the software reusable components [5] and by work done
in the Web service community [6] and the Information
Retrieval community [7]. With respect to the existing
approaches, our algorithm combines both semantic and
syntactic aspects of the Web service that can be derived
from a WSDL description. The semantic aspects are
related to the goal of the Web service and correspond to
the names used for the whole service, the operations and
the parameters. Instead, the syntactic aspects can state
the compliance between the input and output structures
and the adopted data types. The algorithm assumes that,
as usually occurs, the WSDL specification of the Web
service interface is (semi-)automatically generated by a

CurrencyWS

GetLicRate

srcCurrency

destCurrency Body

LicNumber

CurrencyExchangeService

getRate
country1

country2
Result

Fig. 1. Example of similar Web services.

tool starting from a software module, such as a Java
class. This implies that the resulting description will
probably reflect the naming conventions usually adopted
by developers [8].

The approach relies on a domain specific ontology
where terms usually adopted in a given scenario are or-
ganized according to semantic relationships such as syn-
onymy (two words have same meaning), antinomy (two
word have opposite meanings), homonymy (a word with
more meanings). Moreover, a general purpose ontology,
e.g., WordNet, supports the matching between terms that
are not included in the domain specific ontology.

The paper is organized as follows. Section 2 introduces
the notation adopted throughout the paper and the
overall view of the algorithm. Section 3 presents the
similarity evaluation algorithm in detail. Next, Section 4
presents the similarity algorithm extension for seman-
tically annotated Web services. A description of the
prototype of URBE is introduced in Section 5. Section 6
describes how to tune the algorithm and introduces the
experimental results, respectively. In Section 7, we com-
pare our work with relevant approaches in the literature.
Finally, some concluding remarks and a discussion on
possible future extensions are presented.

2 NOTATION AND OVERALL ALGORITHM

We firstly introduce the σi notation which gives an ab-
stract view of the most important elements constituting
a Web service interface according to a WSDL description
and that is considered during the similarity evaluation.
More precisely:
• σi = 〈name, {opk}〉 represents a Web service defined

by: a unique name, and a set of K operations.
• σi.opk = 〈name, {inl, outm}〉 defines an operation in

terms of its name, and the L input and M output
parameters.

• σi.opk.inl = 〈name, type〉 defines an input parame-
ter as a pair: name of the parameter and data type.
Data type can be either simple (e.g., string, double,
int) or composite (e.g. address, date).

• σi.opk.outm = 〈name, type〉 defines an output pa-
rameter in the same way of the input one.
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TABLE 1
WSDL entities and corresponding σi elements.

WSDL entity σi element
PortType name σi.name
Operation name σi.opk.name

Input message part name σi.opk.inl.name
Input message part type σi.opk.inl.type

Output message part name σi.opk.outm.name
Output message part type σi.opk.outm.type

...
<message name="getRateRequest">

<part name="country1" type="xsd:string"/>
<part name="country2" type="xsd:string"/>

</message>
<message name="getRateResponse">

<part name="Result" type="xsd:float"/>
</message>
<portType name="CurrencyExchangePortType">

<operation name="getRate">
<input message="tns:getRateRequest" />
<output message="tns:getRateResponse" />

</operation>
</portType>

...

  σa.name = CurrencyExchangePortType
  σa.op1    = { σa.op1.name = getRate,
             σa.op1.in1 = {  σa.op1.in1.name = country1,
                        σa.op1.in1.type = xsd:string },
             σa.op1.in2 = {  σa.op1.in2.name = country2,
                        σa.op1.in2.type = xsd:string },
             σa.op1.out1 = {  σa.op1.out1.name = result,
                         σa.op1.out1.type = xsd:float }
           }

Fig. 2. CurrencyExchangeService.wsdl interface and re-
lated σi representation.

The correspondences between the σi notation and the
elements in a WSDL are shown in Table 1. It is worth
noting that in our model, given a WSDL, we can have
more than one σi, since σi corresponds to a portType.
Therefore, in our approach we consider each portType
as a separate Web service. Fig. 2 shows an example of
a σi derived from a WSDL document. In this case, only
one portType exists, so only one σi is produced.

With Σ = {σp} we represent the Web service registry,
in which the interfaces of all the available services are
published. Thus, σp identifies a generic published Web
service interface.

Finally, with σq we identify the query, i.e, the interface
we are looking for in the registry. As a result, our
approach returns Σσq as the set of Web services interfaces
included in the registry which are similar to the query.
Thus, according to a query by example approach, the user
defines the characteristics of the desired Web service in
the same way as the published ones. Since our approach
only focuses on the Web service interface, for the sake
of simplicity, hereafter, we use the terms Web service and

input σq ; //receive the query
input thSim; //set the threshold
let Σσq = ∅ ; //initialize the result

for (p=0; p<|Σ|;p++)
sim=fSim(σq, σp); //similarity evaluation
if (sim >=thSim) then

add(Σσq,σp);
end if

end for;
output Σσq

Fig. 3. Pseudo-code of the overall algorithm.

interface, interchangeably.
Assuming that the function fSim returns the similar-

ity degree between two Web services, as discussed in
Section 3, the pseudo-code in Fig. 3 summarizes the main
steps performed by URBE.

Generally speaking, once the query is defined, the sys-
tem compares it with all the Web services published in
the registry Σ. If the similarity value, obtained invoking
the function fSim, is greater than a threshold (thfSim),
then the published Web service is added to the result set
Σσq .

The function fSim returns a value included in [0..1].
The higher the result of fSim, the higher the similarity
between the two interfaces is. Since one of our main
objectives is Web service substitution, a higher value of
fSim also means less burden with Web service substitu-
tion. In case of WS-BPEL design, if none of the published
Web services exposes the same interface according to the
partners definition, then the higher the value of fSim,
the less the complexity in building a mediator.

In particolar, fSim(σq, σp) = 1 if the two Web services
expose the same interface, whereas fSim(σq, σp) = 0 in
case the interfaces are completely different. It is worth
noting that a similarity value equals to 1 means that the
interfaces of σq and σp are the same from a syntactical
and structural standpoint. So, with our algorithm we are
not able to state if given the same input, they return the
same output only since they provide exactly the same
kind of service from a semantical standpoint.

3 URBE SIMILARITY EVALUATION

The fSim function relies on two main functions: a name
similarity function nameSim, and a data type simi-
larity function dataTypeSim. Generally speaking, the
nameSim function compares two names included in the
Web service interfaces and evaluates how similar they
are, whereas the dataTypeSim function evaluates how
similar two data types characterizing the parameters in
the Web service interfaces are.

Both of these two functions, as well as the fSim
itself, rely on an additional maximization function called
maxSim. This maximization function exploits the linear
programming formulation of the assignment in bipartite
graphs problem to realize which is the maximum simi-
larity between the elements included in the two sets we
are comparing.
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Fig. 4. Graphical representation of the assignment in
bipartite graphs problem.

3.1 Maximization function maxSim

The maximization function relies on the assignment in
bipartite graphs. Given a graph G = (V,E), a matching is
defined as M ⊆ E so that no two edges in M share a
common end vertex. An assignment in a bipartite graph
is a matching M so that each node of the graph has
an incident edge in M . Let us suppose that the set
of vertices are partitioned in two sets Q and P , and
that the edges of the graph have an associated weight
given by a function f : (Q,P ) → [0..1]. The function
maxSim : (f,Q, P ) → [0..1] returns the maximum
weighted assignment, i.e., an assignment so that the
average of the weights of the edges is maximum. Fig. 4
shows a graphical representation of the problem, where
the bold lines constitute the matching M .

Expressing the assignment in bipartite graphs accord-
ing to a linear programming model, we have:

maxSim(f,Q, P ) =
1
|Q|
· max

j∈J∑
i∈I

f(qi, pj) · xi,j∑
j∈J

xi,j ≤ 1 ∀i ∈ I∑
i∈I

xi,j ≤ 1 ∀j ∈ J

I = [1..|Q|], J = [1..|P |]
(1)

Applying the assignment in bipartite graphs problem
to our context, the set Q represents a query, whereas
P is what we compare with the query to evaluate the
similarity. Let us assume, for instance, that Q and P
are composed of the operations in σq and σp. |Q| < |P |
means that the number of operations in Q is lower than
the number of operations available in P ; so, for each

operation in Q we may find a corresponding operation
in P . On the contrary, |Q| > |P |means that we are asking
for more operations than are actually available. Since
our approach aims to state if σq can be replaced with
σp, then the situation in which |Q| < |P | is, in general,
better than the case |Q| > |P |. For this reason, we divide
the result of the maximization by the cardinality of |Q|.
So, if |Q| < |P | then maxSim : (f,Q, P ) → [0..1],
whereas if |P | < |Q| then maxSim : (f,Q, P ) → [0.. |P ||Q| ].
In this way, the function maxSim is asymmetric, i.e.,
maxSim(f,Q, P ) 6= maxSim(f, P,Q).

Beyond the cardinality of the sets Q and P , the
maxSim function is affected by the weights of the edges
that are computed according to the function f . In our
context, such a function is a similarity function, which
given two vertices states how similar they are. As we
discuss in detail in the following, the goal of the maxSim
function varies with respect to the nature of the sets
we are considering. For instance, if we are comparing
two parameters, then maxSim considers both the names
of the parameters and the data types (exploiting the
nameSim and dataTypeSim functions illustrated be-
low); in case of we are comparing two operations, then
maxSim relies on the similarity function that takes into
account both the name of the operations and all their
parameters.

Adopting this approach, we are sure to find the global
maximum similarity that can be obtained pairing the
elements in the two sets. Alternative approaches are
able to find only the local maximum since they scroll
the elements in the first set and, after calculating the
similarity with all the elements in the second set, they
select the one with the maximum similarity. Since every
element in one set must be connected, at most, at one
element in the other set, such a procedure is able to find
only the local maximum since it depends on the order in
which the comparisons occur. For instance, considering
the example in Fig. 4, q1 will be paired to p1 (weight=1.0)
but, when analyzing q2 the maximum weight is with
p2 (weight=0.8). This means that q3 can no more be
paired to p2 even if the weight is maximum, since this
is already matched to q2. As a consequence, q3 will be
paired to p3 and the average of the selected weights will
be (1.0 + 0.8 + 0.2)/3 = 0.6 which is considerably lower
than using maxSim where the sum of the weights was
(1.0 + 0.7 + 1.0)/3 = 0.9

3.2 Names similarity function nameSim

The goal of the nameSim function is to compute the
similarity between names with respect to the closeness of
such names in a given ontology. In particular, assuming
that the registry Σ includes Web services related to
a given application domain, to compute the similarity
among two names we rely on a domain specific ontology
and a general purpose ontology.

The domain specific ontology includes terms related to a
given application domain. We assume that this ontology
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can be built by a domain expert also analyzing the terms
included in the Web services published in the registry.
The general purpose ontology includes all the possible
terms (at this stage we adopt Wordnet). We decided
to rely on both ontologies since the domain specific
ontology offers more accuracy in the relationships of
the terms, whereas the general purpose one offers wider
coverage. This happens because in a general purpose
ontology a word may have more that one synonym set
(a.k.a. synset): a set of one or more synonyms that are
interchangeable in some context. On the contrary, we
assume that in a domain specific ontology each word
has a unique sense with respect to the domain itself. For
instance, if we consider the noun currency, in WordNet
it has two synsets. The first one is about the financial
domain, i.e., the metal or paper medium of exchange
currently being used; the second one is about a generic
meaning, i.e., general acceptance or use. Comparing the
term currency with the term money 1 we can realize that
they are strictly related only if we consider the financial
domain. On the other hand, if we consider the other
synset the relationship is looser. Therefore, in case of
general purpose ontologies, it is hard to figure out which
is the correct domain to consider then, so we consider
the average similarity for each synset.

Due to the nature of the names normally included
in an automatically generated WSDL, name similarity
can be applied only after a tokenization process which
produces the set of terms to be actually compared. In
fact, names included in a Web service interface could be
like currencyExchange, or userId which are difficult
to find in both our ontologies. On the contrary, in
the ontologies we can find the terms composing these
names: e.g., currency, exchange, user, id. For this reason,
we perform the tokenization to decompose a given name
in its terms. These terms will be the actual elements
compared to obtain the similarity among names.

The tokenization process starts from a generic name
n and then it builds the set of terms {ti} composing
it, according to a set of rules inspired by common
programmers naming conventions. At this stage, our
tokenization takes care of case change, the use of under-
score and hyphenation, and use of numbers. In Table 2
a list of examples is provided to clarify the rules which
the tokenization relies on. The terms resulting from the
tokenization are also stemmed. Thus, words such as
sending or exchanged are transformed into their stemmed
version: send, exchange. The stemming process is a well-
known process and it is adopted by several Information
Retrieval approaches [9].

The set of terms resulting from the tokenization and
stemming process is the input of the name similar-
ity function nameSim. If we consider two tokenizable
names nq = {tq,i} and np = {tp,j}, their similarity
evaluation relies on the maxSim function introduced

1. see http://marimba.d.umn.edu/cgi-bin/similarity.cgi

TABLE 2
Tokenization rules examples.

Rule Original term n Tokenized version
{ti}

Case change currencyExchange currency, exchange
Case change SendSMSTo send, sms, to
Suffix numbers elim-
ination

currency1 currency

Underscore
separator

currency exchange currency, exchange

above:

nameSim(nq, np) = maxSim(termSim, {tq,i}, {tp,j})
(2)

where {tq,i} and {tp,j} represent the set of terms ob-
tained after the tokenization and stemming process.

Thus, we apply the maximization function when
comparing two sets composed of the set of terms ob-
tained after the tokenization process. In this case, the
weights between the vertices is given by a function
termSim : (term, term)→ [0..1]. In the literature, several
approaches are available to state the similarity and the
relatedness among terms [10]. These algorithms usually
calculate such a similarity relying on the relationships
among terms defined in a reference ontology (e.g., is-
a, part-of, attribute-of ). In our approach, to compute the
similarity among terms we adopt the approach proposed
by Seco et al. [11] where the authors adapt existing
approaches relying on the assumption that concepts with
many hyponyms 2 convey less information than concepts
that have less hyponyms or any at all (i.e, they are leaves
in the ontology).

3.3 Data types similarity function dataTypeSim

In a WSDL description, data types are expressed by XSD
(XML Schema Definition) specifications. A data type can
be built-in or complex [12]. In the former case, simple data
types (e.g., xsd:string, xsd:decimal, xsd:dateTime) as well
as derived data types (e.g., xsd:integer, xsd:short, xsd:byte)
are included. In the case of complex data types, data
type is expressed according to an XSD schema which
is included, or imported, in the WSDL specification as a
complexType: a data type which includes other data types
(either built-in or complex).

The function dataTypeSim : (dtq, dtp) → [0..1] calcu-
lates the similarity between two data types defined in
the following way:
• if both dtq and dtp are built-in XSD data types
dataTypeSim = simpleDTSim.

• if both dtq and dtp are complex XSD data types
dataTypeSim = complexDTSim.

• if dtq is a built-in data type and dtp is a complex
data type (or vice-versa) then
dataTypeSim = 0: we consider them totally differ-
ent since they have an incomparable data structure.

2. A hyponym is a word of more specific meaning than a general
term applicable to it, i.e., spoon is a hyponym of cutlery.
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TABLE 3
Simple Data Type groups.

Group Simple and derived XSD Data Types

Integer group integer, byte, short, long
Real group float, double, decimal
String group string, normalizedString
Date group date, dateTime, duration, gDay, gMonth,

gMonthDay, gYear, gYearMonth, time
Boolean group boolean

TABLE 4
simpleDTSim function.

dtq
dataTypeSim Integer Real String Date Boolean

d
t p

Integer 1.0 0.5 0.3 0.1 0.1
Real 1.0 1.0 0.1 0.0 0.1
String 0.7 0.7 1.0 0.8 0.3
Date 0.1 0.0 0.1 1.0 0.0
Boolean 0.1 0.0 0.1 0.0 1.0

In case of built-in data types we take inspiration
from [13]: we group the simple and derived XSD data
types in five main classes as shown in Table 3. In this
way, when the comparison between two built-in data
types is needed, then we take into account the mem-
bership in these groups. In more detail, Table 4 defines
the behavior of function simpleDTSim where the values
included in the table is inversely proportional to the
information loss that will occur if we apply a casting
from dtq to dtp. To quantify the information loss we
propose the qualitative reference scale shown in Table 5.
The similarity between two data types are calculated as
the complement of the information loss. For instance, if
dtq belongs to the integer group and dtp to the real group
then we assume than simpleDTSim = (1 − 0.0) = 1.0
since we have no information loss. In the opposite
situation instead, simpleDTSim = (1 − 0.5) = 0.5 since
we can convert a real into an integer but we lose the
decimals. Another significant situation is when dtq is a
boolean and dtp is an integer. In this case, we assume that
the information loss is 0.1 and not as 0.0, since it might
happen that we can operate a transformation true = 1
and false = 0; so, simpleDTSim = (1 − 0.9) = 0.1.
Generally speaking, simpleDTSim is defined indepen-
dently of the specific Web service and gives an idea of
the information loss. The values included in the Table 5
are obtained conducting empirical evaluations.

In case of complex data types, the literature [14], [15]
proposes several approaches to compare XSD schema
documents. These approaches usually evaluate differ-
ently how much the trees representing the data types
are different and provide distance metrics. In our case, in
order to reduce the complexity of the overall algorithm,
we focus our attention more on the semantics of data
rather than on their structure. We assume that the goals
of the parameters are well defined by the name of the
data types. As a consequence, in case of comparison of

TABLE 5
Referencing scale for evaluating the information loss

(intermediate values are admissible as well).
Information loss Value
data types are totally incompatible 1.0
in some rare case casting does not produce information
loss

0.7

information loss happens by casting 0.5
often casting does not produce information loss 0.3
data types are the same 0.0

σq

σq.op1 σq.op2

σq.op1
.in1

σq.op1
.out1

σq.op2
.in1

σq.op2
.in2

σq.op2
.out1

σp

σp.op1 σp.op2

σp.op1
.in1

σp.op1
.out1

σp.op2
.in1

σp.op2
.in2

σp.op2
.out1

fSim

opSim

parSim

Fig. 5. Tree representation and nested comparison.

complex data types, complexDTSim = nameSim. Ob-
viously, considering also the data type structure would
allow for a more precise evaluation but, as discussed
in the following, the comparison among data types will
occur several times and we need to mediate between
execution time and the accuracy of the approach.

3.4 Web service similarity function fSim

The maximization function along with the name and
data type similarity functions constitute the building
blocks of the overall similarity function fSim. More
specifically, the similarity function fSim : (σq, σp) →
[0..1], given a couple of Web services interfaces σq and
σp, returns a value stating how similar σp is to σq .

Fig. 5 gives a high level view of fSim. According
to the σi notation, each interface can be represented
as a three-level tree: first, we have σi representing a
portType, then the set of operations σi.opk, and finally,
the set of parameters (σi.opk.inl, σi.opk.outm), represent-
ing the parameters of the supported operations. As a
consequence, the functions which evaluate the similarity
among the whole interfaces (fSim), operations (opSim),
and parameters (inParSim and outParSim) are nested
in the same way. In detail, fSim returns the similarity
between the two Web services relying on the function
opSim. For each requested operation, opSim identifies
the operation in the published Web service which is most
similar to relying on inParSim and outParSim. Finally,
given two sets of requested parameters, inParSim and
outParSim find the most similar parameters in the
published ones. According to this:

fSim(σq, σp) = wPTNameSim ·
· nameSim(σq.name, σp.name) +
+ (1− wPTNameSim) ·
· maxSim(opSim, σq.{opqk}, σp.{oppk}),

(3)
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where:

opSim(σq.opqk, σp.oppk) =
wOpNameSim · nameSim(σq.opqk.name,

σp.oppk.name)+
+(1− wOpNameSim)·
·[0.5 ·maxSim(inParSim, σq.opqk.{inql},

σp.oppk.{inpl})+
+0.5 ·maxSim(outParSim, σp.oppk.{outpm},

σq.opqk.{inqm})]

(4)

and

inParSim(σq.opqk.inql, σp.oppk.inpl) =
wParNameSim · nameSim(σq.opqk.inql.name,

σp.oppk.inpl.name)+
+(1− wParNameSim)·
·datatypeSim(σq.opqk.inql.name, σp.oppk.inpl.name)

(5)

outParSim is similarly defined.
It is worth noting that the following properties hold

for the similarity function fSim :
• fSim(σi, σi) = 1: a Web service is totally similar to

itself so it is fully replaceable;
• in general, fSim(σi, σj) 6= fSim(σj , σi): the sim-

ilarity depends on which Web service holds the
role of query. This asymmetry derives from the
asymmetry of both the maximization and the data
type functions.

The parameter wPTNameSim ∈ [0..1] defines how
much the similarity of the name of the portTypes
has more importance than the similarity between the
operations that these portTypes contain in computing
the overall similarity. In the same way, at operation level,
the parameter wOpNameSim weights the importance
between the similarity of the operation names and the
similarity of the related parameters in computing the
operation similarity. Finally, wParNameSim states how
much the similarity of the parameter names has more
weight than the analysis of the data types when com-
puting the parameter similarity.

According to the opSim formulation, we assume that
the evaluation of similarity between the input and out-
put parameters has the same importance. Especially in
the case of Web service substitutability, it might also
happen that the output parameters are more important
than the input ones. In fact, when a Web service fails
and needs to be replaced, the designer should look first
of all to Web services which are able to produce the same
outputs. This is because the Web service result will rep-
resent the input of other Web services. Thus, preserving
the output structure the Web service substitution might
have a lower impact on the whole system. To obtain
this behavior, the weights for inparSim and outparSim
should be properly set.

4 SEMANTIC EXTENSION

At this stage, WSDL represents the most widely used
way to describe a Web service interface. Even if WSDL
provides enough information to establish a connection
with a Web service, this specification lacks details on
the real goal of the whole Web service and the con-
stituting operations as well. As a consequence, several
efforts have been made by the Semantic Web community
to improve the Web service description. One of these
approaches is SAWSDL [4] which semantically enriches
the Web service interface definition by annotations: el-
ements of the WSDL are annotated with concepts or-
ganized in a reference ontology. Annotations provide
new information which might be useful to state the
Web service similarity. As a consequence, in this work,
we also propose a semantic-aware variant of URBE.
We decided to focus on SAWSDL since it is built on
WSDL (the document structure remains the same) and
simply adds some annotations which are able to better
describe operations and parameters. This new approach
affects the σi notation as introduced in Section 2. Now,
we consider σsi as the semantic version of σi which
considers the annotations applied to Web service names,
operations names, and parameters names:

• σsi = 〈name, ann, {opsk}〉.
• σsi .op

s
k = 〈name, ann, {insl , outsm}〉.

• σsi .op
s
k.in

s
l = 〈name, ann, type〉

• σsi .op
s
k.out

s
m = 〈name, ann, type〉.

We assume that the Web service provider is in charge
of annotating at design time the resulting description us-
ing the terms included in an ontology defined according
to the OWL (Web Ontology Language) specification [16].
Annotations can be both classes (i.e., sets that contain
individuals) or properties (i.e., binary relations on indi-
viduals) and in the ontology both classes and properties
can be organized in a superclass-subclass hierarchy [17].

Introducing the annotation provides a more accurate
description of the elements included in a WSDL descrip-
tion. Moreover, the most meaningful way in which the
concepts are organized in the reference ontology allows
for better accuracy during the Web service comparison.
Thus, we can exploit these annotations when perform-
ing the similarity analysis. On this basis, the similarity
function fSim can be modified to take advantage of
these new elements. Therefore, we propose fSims as the
semantic-aware variant of fSim:

fSims(σsq , σ
s
p) = wPTNameSim · (6)
· annSim(σsq .ann, σ

s
p.ann) +

+ (1− wPTNameSim) ·
· maxSim(opSims, σsq .{opsqk}, σsp.{opspk}),
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function annSim(a_q, a_p)
if (a_q is class) and (a_p is class)

return pathSim(a_q, a_p)
elseif (a_q is property) and (a_p is

property)
return pathSim(a_q, a_p)

elseif (a_q is class) and (a_p is property)
return classpropSim(a_q, a_p)

elseif (a_q is property) and (a_p is class)
return propclassSim(a_q, a_p)

end function

Fig. 6. Pseudo-code of overall algorithm.

opSims(σsq .op
s
qk, σ

s
p.op

s
pk) =

wOpNameSim · annSim(σsq .op
s
qk.ann,

σsp.op
s
pk.ann)+

+(1− wOpNameSim)·
·[0.5 ·maxSim(inParSims, σsq .op

s
qk.{insql},

σsp.op
s
pk.{inspl})+

+0.5 ·maxSim(outParSims, σsp.op
s
pk.{outspm},

σsq .op
s
qk.{insqm})]

(7)

inParSims(σsq .op
s
qk.in

s
ql, σ

s
p.op

s
pk.in

s
pl) =

wParNameSim · annSim(σsq .op
s
qk.in

s
ql.ann,

σsp.op
s
pk.in

s
pl.ann)+

+(1− wParNameSim)·
·datatypeSim(σsq .op

s
qk.in

s
ql.ann, σ

s
p.op

s
pk.in

s
pl.ann)

(8)

outParSims is similarly defined.
With respect to the former fSim, instead of comparing

the name adopted to define the service elements using
the nameSim, we now compare the related annotations
using the function annSim. Since it might happen that
some of the operations and parameters of a Web service
are not annotated, then we will use nameSim whenever
at least one of the compared elements is not annotated.
In detail, annSim : (aq, ap)→ [0..1] receives as input two
annotations and returns their similarity according to the
way in which they are related in the reference ontology.
Hereafter, we assume that both aq and ap are included
in the same ontology, otherwise annSim returns 0. Since
the annotations can be classes or properties, as shown
in the Fig. 6, the annSim relies on three functions to
compute the similarity in all the possible situations:
pathSim, classpropSim, and propclassSim.

In case both annotations are classes or both annota-
tions are properties, to compute the similarity between
the two annotations we take into account the subsump-
tion path which connects them. Thus:

pathSim(aq, ap) =

0, if no subsumption path exists
1

(pathlength(aq, ap) + 1)
, otherwise

(9)
where pathlength returns the number of hops constitut-
ing the longest path (i.e., the worst case) connecting the
two classes or properties.

In case aq is a class and ap a property, the function
classpropSim firstly verifies that the domain of the
property corresponds to the class. If so, it means that (i)
the annotation in the query, i.e., aq refers to a class with
all its properties, and (ii) the annotation in the published
service, ap , refers only to one of those properties. Thus,
we calculate the annotation similarity as follows:

annSim(aq, ap) =


1

#properties of aq
, if aq ≡ domain(ap)

0, otherwise
(10)

In the opposite case, i.e., aq is a property and ap
is a class, the similarity is differently evaluated using
propClassSim, since our final goal is to state the simi-
larity for substitutability purposes. Thus, once we have
verified that the ap corresponds to the domain of the
property aq , then the similarity between annotations is
1. Indeed, now (i) the annotation in the query refers to a
specific property, and (ii) the annotation in the published
service certainly includes such a property since it refers
to the whole set of properties for the defined class. More
formally,

annSim(aq, ap) =

{
1, if aq ≡ domain(ap)

0, otherwise
(11)

5 URBE IMPLEMENTATION

The approach presented in this work has been imple-
mented on a prototype, based on a UDDI Registry, which
supports both the Web service publication and the Web
service retrieval activities.

Fig. 7 shows the main modules composing URBE. Core
of the tool is the Similarity Engine which embeds
the functions fSim and fSims previously presented.
This module can be configured to dynamically bind to
the specific ontology which is considered relevant with
respect to the application domain requested by the user.
In addition, Wordnet is available as a general purpose
ontology and the Java Wordnet similarity library 3 de-
veloped by Seco et al. [11] is used to compute similarity
between terms in Wordnet. In addition, an open-source
implementation of UDDI v.2., i.e., jUDDI 4 is included
to support the UDDI standard API described in [18]
and an open-source implementation of a Mixed Integer
Linear Programming solver, i.e., LpSolve 5, is used to
solve the linear programming model on which fSim
relies. Finally, Jena library is used for accessing OWL-
based domain-specific ontologies.

URBE can be downloaded at: http://black.elet.polimi.
it/urbe and a test client is available at: http://black.elet.
polimi.it/urbeClient.

All of these modules provide a set of functionalities
grouped in three main APIs accessible via SOAP. First,

3. http://eden.dei.uc.pt/ nseco/javasimlib.tar.gz
4. http://ws.apache.org/juddi/
5. http://http://sourceforge.net/projects/lpsolve
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the Domain Expert API allows the configuration of URBE
to set all the parameters. Second, the UDDI API is
available to publish and retrieve Web services. Finally,
the URBE API allows retrieving the set of Web services
which are similar to a given one.

UDDI API

General 
purpose 
ontology

Domain
Specific 
Ontology

WSDL Similarity Engine

JENA

jUDDI

Domain Expert API

Retrieve

Publish

Domain
Expert

URBE 
API

Web service 
provider

Web service 
requestor

Java 
WordNet 
similarity

SAWSDL Similarity Engine

LP Solve

Fig. 7. URBE Architecture.

6 EXPERIMENTAL RESULTS

The evaluation of our work consists of two main steps.
Firstly we consider a small set of Web services and we
tune the algorithm, i.e., we identify the best values for
the parameters which the algorithm depends on. Sec-
ondly over a larger set of Web services the performance
of the algorithm and its semantic extension are evaluated
and compared with related approaches.

In particular, precision (i.e., number of relevant re-
turned Web services w.r.t. the number of returned Web
services) and recall (i.e., number of relevant returned Web
services w.r.t. total relevant Web services in the corpus)
have been adopted as the parameters to evaluate the
performance of our approach [7]. More precisely:

P (σq) =
|{σi ∈ Σσq |σi ∈ <σq}|

|Σσq |
(12)

R(σq) =
|{σi ∈ Σσq |σi ∈ <σq}|

|<σq |
(13)

where σq is the query, Σσq the returned services after
submitting the query, and <σq the relevant services for
the given query.

Precision and recall are measures for the entire result
set without considering the ranking order. Thus, R-
Precision and AP (Average Precision) parameters are also
considered. Both of them depends on the precision at a
given cut-off point (Pn). Thus, assuming Σnσq as the set
including the first n returned services:

Pn(σq) =
|{σi ∈ Σnσq |σi ∈ <σq}|

n
(14)

As a consequence, the R-Precision returns the preci-
sion when the cut-off corresponds to the number of total
relevant Web services in the corpus, i.e., |<σq |:

R-Precision(σq) = P |<σq |(σq) =
|{σi ∈ Σ

|<σq |
σq |σi ∈ <σq}|
|<σq |

(15)
Finally, the AP is the average of precisions com-

puted after truncating the list after each of the relevant
documents, as long as all the relevant documents are
retrieved:

AP(σq) =
Σr=1..NP

r(σq)
|{σi ∈ ΣNσq |σi ∈ <σq}|

(16)

where N = |{σi ∈ Σσq |σi ∈ <σq}| is the number of
relevant documents.

The benchmark adopted for both tuning and evalu-
ating the performance of the similarity algorithm has
been obtained from the OWL-S service retrieval test
collection (OWL-S TC) 6. It consists of more than 570
Web services specified with OWL-S covering seven ap-
plication domains, that are education, medical care, food,
travel, communication, economy, and weaponry. The
benchmark also includes 32 test queries, represented as
OWL-S documents, each of which is associated with a
set of services that the proponents of the benchmark
have defined as relevant. Five of these 32 test queries
are used to tune the algorithm, whereas the remaining
27 test queries are used to evaluate the approach.

Since our similarity algorithm works with WSDL,
before using this benchmark, we derived a WSDL for
each of the OWL-S documents in the test collection using
the tool OWLS2WSDL 7. As a consequence, we have a
benchmark composed by more than 570 Web services
σi and 32 test queries σq . For each of these queries we
can calculate the precision, the recall and all the measures
introduced above.

6.1 Tuning
The tuning phase aims at identifying for which values
of wPTNameSim, wOpNameSim, wParNameSim we
obtain the best performances. For this goal, we randomly
select 5 queries from the 32 test queries defined in the
benchmark. More specifically:
• 1personbicyclecar price service.wsdl
• bookpersoncreditcardaccount service.wsdl
• citycountry hotel service.wsdl
• shoppingmall cameraprice service.wsdl
• surfinghiking destination service.wsdl
For the sake of simplicity, in this presentation we

mainly focus on the parameters wPTNameSim and
wOpNameSim so, we set wParNameSim = 0.7. We
decided to give more importance to the parameter name,
since analyzing the corpus we realize that parameters are
often strings. Therefore, if we gave the same importance
to the data type as the name, we would introduce false

6. http://projects.semwebcentral.org/projects/owls-tc/
7. OWLS2WSDL tool is available at http://projects.semwebcentral.

org/projects/owls2wsdl/
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Fig. 8. Precision/recall graph varying wPTNameSim and
wOpNameSim.

positives and thus the overall accuracy of the result de-
creases. At the same time, we do not want to completely
skip the data type analysis, since in some cases data
types other than strings are present.

About wPTNameSim and wOpNameSim, we iden-
tify their best values by submitting the five tuning
queries several times varying these parameters. In par-
ticular, we run the algorithm 25 times, each of them
with a different combination of wPTNameSim and
wOpNameSim by using pair of values in the set [0.1;
0.3; 0.5; 0.7; 0.9].

Considering the resulting average for precision and re-
call, we notice very close performances for several com-
binations of wPTNameSim and wOpNameSim. Fig. 8
shows the precision/recall curves for the six combina-
tions, among the 25 ones, that provide the best trends.
In particular, we obtain the best performances in case of
wPTName = 0.1 and wOpName = 0.3. In order to plot
Precision/Recall graphs where recall varies from 0% to
100%, we set thfSim = 0. As a consequence, the result
set will always include all the published services ranked
with respect to the similarity value. According to this re-
sult, the global evaluation of URBE discussed in the next
section will be performed using: wPTNameSim = 0.1,
wOpNameSim = 0.3, wParNameSim = 0.7. It is worth
noting that the tuning process should be executed by the
registry manager if the Web service corpus considerably
changes. Since new Web services can be added to the
registry, as well as Web service might be deleted, the
parameters might be affected by this modification since
the algorithm depends on several aspects as the way
in which the WSDL are built (e.g., automatically or
manually) and which is the naming convention adopted
by the programmers (e.g., Java, .NET).

6.2 Algorithm evaluation
Our approach, once properly tuned, has been evaluated
considering the whole benchmark. Excluding the five
queries used during the tuning phase, we now submit

the remaining 27 test queries of the total 32 queries
defined in the benchmark and we compare the result
with some relevant work. About the related approaches,
their results are directly taken from the papers that intro-
duce the work which usually relies on benchmarks built
on purpose by the same authors that also authoritative
define the relevant sets for each submitted query.

Fig. 9 shows the results of our experiments compared
to the related work. Since the papers describing the
related work discuss their results according to different
models, we introduce the comparison in two main ways.
In Fig. 9(a), the classical Vector Space Model (VSM) and
the Ranking-SVM (R-SVM) described in Yu et al. [19]
are compared with our algorithm by calculating R-
Precision, P 5(σq) (a.k.a Top-5 precision), P 10(σq) (a.k.a.
Top-10 precision), and Average Precision [7]. In Fig. 9(b),
Precision/Recall graph along with the results of the
approaches proposed by Hao et al. [20] (WSXplorer),
Stroulia and Wang [13] (Stroulia), and Dong et al. [21]
(Woogle).

Focusing on the first comparison, although the R-
Precision and the AP results lower in URBE than VSM
and R-SVM, the Top-5 as well as the Top-10 precisions
are considerably higher. This means that, given a query,
our algorithm almost always returns the relevant Web
services in the first positions (i.e., 86.7% for Top-5 and
79.6% for Top-10). Considering our main scenario, where
a developer queries the registry to obtain a Web service
that can substitute an existing one, high values for Top-5
and Top-10 mean that the most similar ones are returned
in the first positions.

About the second comparison, the Precision/Recall
graph in Fig. 9(b) compares the performance of URBE
against to WSXplorer, the approach proposed by Stroulia
and Wang, and Woogle. Briefly, in WSXplorer compared
Web services, accordingly to the structure of a WSDL,
are represented as trees and the similarity is computed
evaluating an edit distance between these trees. Stroulia
and Wang approach is similar to URBE: a recursive
pair-wise comparison among data types, messages, op-
erations, and Web service is performed for stating the
similarity. Even in this case, the name of operations,
messages, and parameters are taken into account as
well as the data type of the parameters, but Stroulia
and Wang also consider, if available, text description
fields. With respect to URBE, in this case, the structural
similarity does not consider the number of elements
compared, so it does not return a normalized score. In
case of Woogle, the names adopted in the Web service
descriptions are considered as bag of words so that
the similarity is computed using the tf/idf algorithm.
Nearby the term comparison, in Woogle the concept
comparison is computed as well. Concepts are derived
from the names used in the Web service description and
the similarity between concepts occurs after a clustering
process that identifies relationships among all the terms
in the corpus of Web services. Thus, the similarity among
concepts is computed with respect to such relationships.
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Fig. 9. Comparison between URBE and some of the
related work.

Considering WSXplorer and Stroulia and Wang ap-
proaches, URBE has the best performance with respect
to both precision and recall. In details, in URBE the
precision remains above the 80% as long as the recall
is lower than 70%. Woogle, instead, has a better preci-
sion than URBE when the recall is lower but a worst
precision with higher recall (greater than 80%). This
difference may be motivated by the different way in
which the semantic term similarity is evaluated and the
query structure. Indeed, Woogle relies on a clustering
algorithm that creates semantic associations between the
terms included in all the published services regardless of
the submitted query. About the query, Woogle allows to
search for a single operation and a returned Web service
is considered relevant if it contains at least one operation
similar to the requested one. In case of URBE, the user
can look for a Web service that includes more than one
operations.

6.3 Semantic extension evaluation
To evaluate the semantic-aware variant of our retrieval
algorithm, we start from the same benchmark intro-
duced above. In this case, SAWSDL descriptions are
obtained adding annotations to the WSDL previously
derived from OWL-S files. In details, annotations are
attached to the WSDL message parts of both input and

...
<wsdl:message
  name="_4wheeledcar_Request">
  <wsdl:part name="_4wheeledcar" 
             sawsdl:modelReference=
             "http://127.0.0.1/ontology/
              my_ontology.owl#4WheeledCar"/>
  <wsdl:part name="_Price" 
             sawsdl:modelReference=
             "http://127.0.0.1/ontology/
              concept.owl#Price"/>
</wsdl:message>
...

...
<process:Input rdf:ID="_4WHEELEDCAR">
  <process:parameterType>http://127.0.0.1/ontology/
                         my_ontology.owl#4WheeledCar
  </process:parameterType>
  <rdfs:label></rdfs:label>
</process:Input>

<process:Output rdf:ID="_PRICE">
  <process:parameterType>http://127.0.0.1/ontology/
                         concept.owl#Price
  </process:parameterType>
  <rdfs:label></rdfs:label>
</process:Output>
...

Fig. 10. Example of SAWSDL derived from OWL-S
description.

output parameters using the parameterType fields in
the OWL-S description. Relying on this relationship,
we developed an application for automatically annotate
a WSDL, previously obtained by using OWLS2WSDL,
according to the SAWSDL specifications. Fig. 10 shows
an excerpt of annotated message obtained by processing
a OWL-S file. Fig. 11 shows the result of the evaluation
comparing the precision/recall curve when the semantic
annotations are considered (URBE-S) against the work of
Syeda-Mahmood et al. [22] and the results introduced in
the previous section when algorithm purely based on
service interfaces is considered (URBE). The approach
proposed by Syeda-Mahmood et al. (Syeda) does not
consider the structure of the WSDL description but it
only focuses on the terms or, if present, the annotations
included in the Web service description.

As shown in the Fig. 11, we notice how the semantic-
aware variant of our algorithm has a better precision
than the other approaches. In addition, we also compare
URBE-S with Woogle that, as discussed in the previous
section, was better than our approach when considering
low recall due to some use of semantics. Now, since we
can exploit the semantic captured by the annotation, our
results significantly improves even in case of lower recall
and the gap with Woogle is reduced. In the comparison
we also include the Precision/Recall graph of OWLS-
MX [23] that is obtained with the same benchmark we
adopted. Even if in this case the similarity is calculated
compared two OWL-S descriptions, we can notice how
URBE-S has a better trend even if it considers only the
concepts related to the input and output parameters.

All the experiments discussed in this paper have been
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Fig. 11. Comparison between URBE, its semantic-variant
URBE, another semantic-based approach, and Woogle.

done on an IBM eServer xSeries (with 2 CPU Intel Xeon
3GHz) and 4GByte of RAM. The part of the algorithm
able to solve the linear programming problem exploits
the open-source application LPSolve, and it has been
formulated to always obtain the global optimum result.
The execution-time of fSim is directly affected by the
exponential complexity to solve the assignment in bipar-
tite graphs problems [24]. Some heuristics [25] reduce
the complexity to O(n2), where n is the sum of the
cardinalities of the two sets we consider. According to
the analysis presented in [26], on average a Web service
has 3 operations and each operation has 4 parameters
(considering both inputs and outputs). Comparing two
Web services with these characteristics, our approach
requires about 0.3 sec.

7 RELATED WORK

Web service retrieval, also called Web service discovery,
is one of the fundamental steps in Service Oriented
Computing, and several papers can be found in the liter-
ature of several communities including: Information Sys-
tems, Software Engineering, Semantic Web, and Software
Agents. Extending the definition provided in [27], Web
service Discovery can be defined as the act of locating
the machine-processable descriptions of the Web service
that may have been previously unknown and which
meet the criteria expressed by the service requestor.
Garofalakis et al. in [6] introduce a general overview of
current Web service discovery mechanisms and propose
a categorization with respect to: architectures, standards,
QoS-awareness, and data models. According to such a
categorization our efforts aim to cover most of these
aspects. At this stage, our similarity algorithm works
with WSDL and SAWSDL standards, and takes into
account both Information Retrieval and Semantic Web
data models. The resulting tool, i.e., URBE, extends the
UDDI Registry architecture.

Although the classification proposed by Garofalakis et
al. provides a good overview, the paper does not enter
into the details of the retrieval algorithms on which the

listed mechanisms are based on. Focusing on this as-
pect, Klein and Bernstein [1] identify four main retrieval
approaches: keyword-based, concept-based, table-based,
and deductive. Keyword-based approaches require that
all the documents are associated with keywords which
the retrieval algorithms are based on. Concept-based
approaches rely on defining an ontology of concepts for
classifying documents. Table-based approaches consist
of attribute-value pairs that capture service properties.
Finally, deductive-based approaches require the descrip-
tion of Web services with formal logics. Retrieval then
consists in inferring which services achieve the function-
ality described in the query. As stated by the authors, the
keyword-based approaches are the easiest to be imple-
mented, but they provide lower precision and recall. On
the contrary, the deductive-based ones appear to be the
most precise, but they involve the use of formal logic:
Web service capabilities and user queries are more diffi-
cult to define and the computational complexity grows.
According to this classification, our approach mixes the
simplicity of the table-based approach and the precision
of concept-based retrieval techniques. In fact, we mainly
use WSDL for expressing the Web service capabilities, as
usually done by programmers. In addition, the queries
follow the same grammar and this way it is more usable
for the requestor.

As in our work, other work in the literature relies on
the syntax of the Web service description and compares
the signature of the requested service with respect to the
signatures of the existing Web services. This approach is
closely related to the approaches studied in the reusable
components retrieval literature [28]. In this field, as
stated by Zaremski and Wing, there are two types of
methods to address this problem: signature matching [5]
and specification matching [29]. In particular, signature
matching considers two levels of similarity introducing
the exact and relaxed signature matching. In our work,
signature matching represents the core of the approach.
In addition, our similarity algorithm also quantifies how
similar a Web service is to another one, instead of simply
dividing the retrieved Web services in exact matching
and relaxed matching ones. In addition to the signa-
ture, Stroulia and Wang, in [13], exploit the description
fields as well. Adopting classical Information Retrieval
techniques (e.g., tf-idf [7]) combined with Wordnet, they
are able to increase the precision of the retrieval mecha-
nisms. This approach can be considered complementary
to ours since we do not consider the text description.
On the contrary, the Stroulia and Wang approach does
not take into account the number of operations and
parameters. To improve the effectiveness of the similarity
evaluation, Dong et al. [21] with Woogle propose to run
a clustering algorithm for identifying the relationships
among the terms adopted in all the published Web
services. Then, the operation similarity is based on these
pre-built relationships. With respect to our approach,
Woogle allows to submit a single operation. In our case,
we can search for a Web service that includes more than
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one operation.
Similarity analysis can also consider the component

behavior. Mecella et al. [30] compare the external behav-
ior of Web services, i.e., their conversations. Considering
the conversation as a state machine, their approach
compares these state machines in order to evaluate their
compatibility. About the similarity of the Web service
signatures, Mecella et al. do not deal with names and
types compatibility assuming the presence of a domain
expert able to manually discover possible similarities.
In some other work, [31]–[34] describe the Web service
behavior according to other models, such as Petri Nets,
or considering the execution paths. In this case, the
similarity evaluation compares the Web service conver-
sations, i.e., the order in which the provided meth-
ods have to be invoked. In our approach we consider
all the involved Web services as stateless ones. Other
approaches use pre- and post-conditions to model the
behavior. For instance, Budak Arpinar [35] study the
relationships between pre- and post-conditions to figure
out which is the goal of the Web service and to provide a
tool for automatic composition. Spanoudakis et al. [36]
introduce an integrated approach for monitoring Web
service interactions to discover and to repair possible
anomalies. The framework identifies the source of the
anomalies and automatically defines the query as the
Web service that it is required to replace the failed one.
The discovery algorithm is based on the evaluation of the
similarity between the execution path of the query and
the candidate Web services. At this stage, our algorithm
does not consider pre- and post-conditions, since WSDL
does not include this information. These conditions are
out-of-scope of our purposes, since we need to find
similarities among Web services regardless of their invo-
cation sequence. In future work we can consider these
conditions to improve the effectiveness of our algorithm
to support dynamic Web service composition.

With respect to our previous work [37], the entire
approach relies on a linear programming model able to
find a global optimum in the comparison of terms. In ad-
dition, we also consider tokenization and stemming, and
the retrieval algorithm can rely on existing application
domain ontologies. Finally, similarity for semantically
annotated Web service has been introduced.

Syeda-Mahmood et al. [22] have an approach very
close to ours, since the authors consider both the WSDL
description and an annotated version of it. The work is
also interesting since it demonstrates the effectiveness
of using a domain-specific ontology: the precision of
their retrieval mechanism increases when a domain-
specific algorithm is involved. Moreover, as done in
our approach to increase the precision, the authors also
consider the term tokenization according to a code con-
vention. Besides these elements, our work differs since
it also considers the structure of the WSDL description,
whereas Syeda-Mahmood et al. only focus on the terms.

It is worth noting that all the service discovery algo-
rithms listed above rely on a set of techniques to assess

TABLE 6
Related work on Web service retrieval comparison.

Proposal Interface
analy-

sis

Pre/post
condi-
tions

analy-
sis

Behavior
analy-

sis

Semantic

Zaremski and
Wing [29]

X X - -

Stroulia and
Wang [13]

X - - X

Mecella et al. [30] X - X -
Dong et al. [21] X - - X
Budak Arpinar [35] X X - -
Syeda Mahmood [22] X - - X
URBE X - - X

the similarity among Web services. Actually these tech-
niques are used also before the Web service discovery
phase, in order to classify the Web service published
in the registry to facilitate the subsequent discovery.
Usually such a classification is made according to the
functionalities, so that the aim is to cluster similar Web
services with respect to their capabilities. In this way,
Web service discovery is performed in two steps. First,
the cluster containing the most relevant Web services is
identified. Then, a finer-grained analysis is performed
for the Web services belonging to such a cluster. Perryea
and Chung [38] introduce the concept of Web service
community as a way of clustering similar Web services.

A further class of similarity algorithms [23], [39]–[43]
retrieves the Web services with a reasoning process on
a semantic specification. Description Logic is the usual
formalization adopted and results in languages such as
OWL-S [44] and WSMO [45]. Even if these approaches
are more effective than the ones based on WSDL, build-
ing a logic-based Web service description requires more
effort for developers. Moreover, our work focuses also
on the structure of the Web service, for substitution pur-
poses. In the above mentioned algorithms the result of
the retrieval activity is a set of Web services that achieve
the same goal. Nothing can be said about how the goal
is achieved. In addition, these approaches are usually
able to group Web service in similarity classes, i.e., exact
match, partial match, and relax match. On the contrary,
in our approach, we offer a finer grained Web service
ranking based on a similarity value. The Semantic Web
community also adopts SPARQL [46] (Simple Protocol
and RDF Query Language), a query language for RDF
(Resource Description Framework) documents [47], as
a way to express the characteristics of the required Web
service [48]. According to a query-by-example approach,
in our work the requested Web service is defined using
the same language adopted to describe the published
Web services, i.e., WSDL or SAWSDL.

Table 6 summarizes the comparison among the most
significant related work with respect to the nature of
the approach. The classification takes into account which
Web service elements are considered (interface, pre- and
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post-conditions, or behavior) and if a semantic Web
technique is adopted to compare the names included in
the description.

8 CONCLUDING REMARKS AND FUTURE
WORK

In this paper we have presented URBE, an approach for
evaluating the similarity between Web service interfaces
for substitutability purposes. The Web service requestor,
after submitting the interface of the desired Web service,
can obtain a list of similar Web services. The evaluation
of the similarity between Web services considers both
the semantic and the structure of a WSDL description.
The semantic analysis takes into account the names
adopted to describe the elements composing a Web ser-
vice (operations and parameters), whereas the structure
analysis takes into account the number of operations as
well as the number and data types of the parameters.
In addition, our approach also supports SAWSDL as a
description model. In this case, the semantic analysis
takes advantage of the semantic relationships between
annotations in the SAWSDL as also demonstrated in the
Semantic Service Selection (S3) Contest [49].

A prototype of URBE has been developed as a UDDI-
compliant registry that supports our retrieval model and
it has been used to validate of our approach.

Further work will focus on improving performance in
terms of execution time. First of all, a clustering of the
Web services published in the registry can be periodi-
cally done in order to automatically create the applica-
tion domain-based classification. In case the Web services
are also described with OWL-S, we plan to exploit also
this description to create these clusters. Secondly, we
will refer to [50], where the authors propose a set of
basic principles towards efficient semantic Web service
discovery. In particular, these principles focus on: seman-
tic level (reducing ontology management) and matching
level (reducing the number of comparisons). Additional
improvements can be also done for the tuning phase.
About this, we need to study some approaches for
automatically tuning the parameters with respect to the
nature of the published Web services.

Moreover, the semantic analysis of a WSDL can con-
sider differently the comparison between method names
and parameter names. About the former, the verb is
more important since a method name should define an
action. About the latter, the parameter names similarity
should mainly consider the noun, i.e., the meaning of
data on which the action is performed or its output.
Considering the SAWSDL analysis, the next steps aim
to consider in a single step the annotations at different
levels in the structure. For instance, if the required
operation is called as formatDocument, whereas the of-
fered operation has the operation and input parameter
annotated as with format and document, then we should
realize that they are strictly related.

Finally, quality of service will be addressed in future
work for extending the registry. At this stage we have
only some preliminary work [51] where a quality model
and a quality selection approach have been proposed. An
additional extension might allow URBE, given a request
of Web service, to return a set of Web services that, once
composed, can satisfy the initial request.
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