
A quality model for service monitoring and
adaptation ∗

Cinzia Cappiello1, Kyriakos Kritikos1, Andreas Metzger2, Michael Parkin4,
Barbara Pernici1, Pierluigi Plebani1, and Martin Treiber3

1 Politecnico di Milano – Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

{kritikos, pernici, cappiell, plebani}@elet.polimi.it
2 University of Duisburg-Essen – Software Systems Engineering

Duisburg-Essen, Germany
Andreas.Metzger@sse.uni-due.de

3 Vienna University of Technology – Distributed Systems Group
Vienna, Austria

m.treiber@infosys.tuwien.ac.at
4 Tilburg University – Department of Information Systems and Management

Tilburg, Netherlands
m.s.parkin@uvt.nl

Abstract.

1 Introduction

Based on the Service Oriented Architecture (SOA), Service Based Applications
(SBAs) can be built from simple or complex services based on functional and
non-functional requirements usually provided by a user. This construction of
SBAs is usually performed either at design-time or run-time with the help of a
service composition engine. As it is already known, the design-time construction
of SBAs has the limitation that the constructed complex service can fail in many
ways: one of its main component services may not be available as it has reached
its capacity limit or it has produced erroneous output or it has failed or the
network connecting this service with the outer world is not available. For the
above reasons, the run-time construction of SBAs is preferred as it can solve the
above problems, for instance, by substituting the faulty service with another one
offering the same functional and similar quality of service (quality) capabilities
with the faulty one. However, substituting a faulty service with a new one does
not always solve the problem. Sometimes it is most preferable to re-execute
the faulty service with the same or new input parameters or to compensate
this service with a compensation action defined within the service management
interface in case we are talking about transactional services. Moreover, in case

∗The research leading to these results has received funding from the European
Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube) and the Italian FIRB Project TEKNE



the faulty service is substituted with a new one, maybe the remaining execution
plan has to be changed in order to still satisfy the user functional and quality
requirements or violate the quality requirements in a smallest possible way.

Based on the above analysis, the highly dynamic environment under which
services operate imposes new challenges for engineering and provisioning SBAs.
SBAs have to be flexible and adaptable. By flexible we mean that the SBA should
be able to change its behavior according to variable execution contexts while by
adaptable we mean that the SBA should be able to execute even if the conditions
at runtime differ from those assumed during the SBA’s initial design. The former
property can be achieved if SBAs are designed in such a way that are able to self-
adapt to timely-respond to changes in their context or their constituent services
or the user preferences and context. A necessary condition for achieving this
property is that the SBA itself or another application can detect these changes
and deliver them (in the second case) to the SBA. The latter property can be
achieved by equipping the SBA with self-healing mechanisms that enable it to
detect or even predict system failures and to react on them with adaptation
actions that compensate for deviations in functionality or quality.

This paper focuses mainly on the quality aspect of SBA monitoring and
adaptation. To this end, the first part of this paper deals with defining a quality
model for SBAs. This quality model actually defines a complete set of quality at-
tributes that can be quantified with specific metrics used to measure the quality
capabilities of the SBA and consequently to detect if these capabilities deviate
from the user specified quality requirements. While an SBA consists of three
functional layers (from the highest to the lowest): the application, the service
and the infrastructure layer, the set of quality attributes for the application and
service layer is the same with the only difference that the quality attributes of
the application level are derived from the quality attributes of the service level.
For this reason and by considering also the fact that an SBA can be considered
as a complex service, we define only two quality models: a Service Quality model
and a Quality of Infrastructure (QoI) model. QoI can be used for configuring
services and infrastructural components and influences significantly quality. So
both quality models are equally important and must be used in SBA monitoring
and adaptation. Especially, while QoI has been partially used in SBA monitor-
ing, it has been neglected in SBA adaptation which is currently performed only
at the service level. For this reason, we believe that by defining a QoI model we
make a first step for a more complete quality-based adaptation of SBAs.

Quality violations are usually detected by monitoring the SBA, which offers
a reactive way of adapting to these violations. In this paper, after explaining the
main drawbacks of reactive adaptation, it is proposed that a proactive approach
should be followed by predicting the future quality of the SBA and thus adapt-
ing the SBA before the actual deviation takes place. Based on the quality model
proposed in the first part of the paper, it is advocated that quality attributes
should be distinguished between those that can be measured objectively and
those that can be measured subjectively. The quality of the former subset of
quality attributes can be predicted by exploiting two traditional quality assur-



ance techniques: testing and model analysis. On the other hand, the quality of
the latter subset of quality attributes can be predicted by using reputation and
rating systems approaches. All of these prediction techniques are analyzed in
detail and their advantages and disadvantages are highlighted.

The last part of this paper envisions adaptation as a self-healing behavior
of a SBA and so adaptation is defined as a general mechanism for allowing a
SBA to react proactively or reactively through one or more adaptation actions.
Then the main aspects of adaptation are shortly analyzed which influence the
decisions taken for reacting. Next, two main types of adaptation actions for
quality are defined: negotiation and repair. The former allows the definition or
redefinition of the quality attributes (and their thresholds) of interacting services
and infrastructure components at design time or more dynamically following an
auction-based approach. The latter is used to repair system errors with repair
actions on both the service and infrastructural layer. Finally, it is argued that
decision mechanisms for applying repair actions have only been examined at the
service level and that the complexity of such decisions might require completely
new approaches in future research.

2 Related Work

QoS research gained a lot of attention during the last years in the field of Service
Oriented Computing (SoC). In particular service discovery was investigated with
regard to QoS and the use of QoS attributes during the discovery process. The
work presented in [1] proposes a quality extension to UDDI that encapsulates
QoS information which distinguishes four basic classes of QoS attributes, namely
runtime related QoS, transaction support related QoS, configuration management
and cost related QoS and security related QoS.

The approaches presented in [2] and in [3] extend OWL-S ontologies to model
QoS related information.

The work presented in [4] discuss a basic set of QoS attributes. These in-
clude availability, accessibility, integrity, performance, reliability, regulatory, and
security. However, the authors only refer to this list and but do not provide a
dedicated model for the attributes they introduce.

The work presented in [5] introduces five major quality criteria for atomic
services: execution price, execution duration, reputation, reliability, and availabil-
ity. The authors use these criteria in a linear programming approach to select
optimal execution plans for composite services.

Sabata et. al. [12] present a taxonomy for the specification of QoS in dis-
tributed systems. In their approach, the taxonomy is a hierarchical structure that
is divided into two major classifications: metrics and policies. Metrics such as
performance (divided into timeliness, precision, and accuracy) measure quantifi-
able QoS attributes. Policies provide strategies to cope with changing situations
and define renegotiation strategies, etc.

The work presented in [10] introduces a framework for monitoring Grid ser-
vices with respect to QoS attributes. The authors define an extensive, hierarchi-



cal QoS classification schema that consists of four main categories, namely cost,
dependability, configuration and performance.

3 Quality Modeling

3.1 Quality of Services

Previous service quality models and taxonomies considered a small number of
quality categories and in each category only some of the representative quality
attributes were contained. In our approach, this is changed. First of all, we do
not consider only domain-independent quality categories and attributes but also
some of the most frequent domain-dependent ones like the quality categories of
Data-related, used for services operating on and/or producing data, and Quality
of Use Context, used for context-aware adaptive services. Secondly, we consider
quality categories and attributes that are relevant not only for the service and its
service provider but also for the service requestor. For example, the dependability
quality category is important for the service provider but not for the requestor
while the usability quality category is important only for the requestor/user.
Thus, we take into account both the service provider and service requestor views.
Finally, in each category there is an extensive list of the most representative
quality attributes including not only atomic but also composite quality attributes
produced from atomic ones like response time, failure semantics and robustness.

In the sequel, we are going to shortly analyze our service quality model
by focusing on each quality category in order to justify why we have included
it, explain what is its purpose and describe some of its representative quality
attributes. The graphical representation of our service quality model can be seen
in Figure 1. Finally, we conclude this subsection by drawing directions for further
research.

Performance The Performance quality category contains quality attributes
that characterize how well a service performs. Two quality attributes with a very
well defined meaning are common among all research approaches: response time
and throughput. In our quality model, response time is regarded as a composite
quality attribute computed from latency and network delay. Similarly, latency is
composite and is computed from execution time and queue delay time. Finally,
a quality attribute that has similar meaning with execution time is transaction
time but is used in a different context (transactional services).

Dependability Dependability of a computing system is the ability to deliver
service that can justifiably be trusted [6]. In the work of Avizienis et. al. [6], the
phrase “justifiably trusted” is translated into three different quality attributes
and views: availability, reliability and security. In our opinion, security is orthog-
onal to dependability and must be put in separate category because it provides
the mechanisms that can possibly avoid a specific type of failures from happen-
ing but it has nothing to do with the way the service has been designed and built
(with respect to its proper functioning). Moreover, security mechanisms can be
broken so even these faults cannot be prevented. Thus, we believe that depend-
ability contains availability, reliability, failure semantics [7] and robustness [1,



8, 9] with the latter two attributes describing: a) the type of faults that can be
exposed and how the service reacts to them (the first one) and b) the capability
of the service to behave in an acceptable way when these faults happen (the sec-
ond one). Another important remark is that besides availability, another quality
attribute with similar meaning that should be added in this quality group is
accessibility [10] as it can characterize the case where a service is available but
not accessible to some users e.g. due to network connection problems.

Security Services should be provided with the required security. With the
increase in the use of services which are delivered over the public Internet, there
is a growing concern about security. The service provider may apply different
approaches and levels of providing security policy depending on the service re-
questor. Security for services [11, 1, 9] means providing authentication, authoriza-
tion, confidentiality, traceability/auditability, accountability, data encryption, and
non-repudiation. Besides these classical quality attributes, we have added two
more, namely safety and integrity [6].

Data-related In specific application domains, services do not only accept
input parameters but also input data and they may also produce output data.
For example, a credit card service can accept as input a data file describing the
user’s credit card information and can produce as output a data file describing
details of the transaction executed based on the functionality of the service.
These input/output data are characterized by quality attributes that have been
traditionally used in the information and data quality domains like accuracy and
timeliness [8]. Except from traditional data quality attributes, we have added
two more attributes that characterize the way the service behaves with respect
to the data it operates on or produces when it fails (data policy) and the degree
of validity of the data (data integrity [8]).

Configuration Management This quality group/category contains quality
attributes that influence the way a service is configured to function (service level
[12]) or characterize if the promised functional and quality level has been actually
delivered during the service’s lifetime period (completeness, stability, reputation).

Network and Infrastructure-related The network is usually used for
sending requests and receiving (either instantaneously or continuously) the re-
sults back and connects the service with the requesting user. Initially, most of
the research approaches [12, 4, 11, 1] were neglecting this quality aspect but after
the work published in [13], this situation has changed [8, 9]. Network parameters
influence the values of service quality parameters of other quality groups like
response time and availability. We have identified four network quality parame-
ters, that are common among all research approaches, namely: bandwidth, net-
work delay, delay variation and packet loss. Another entity that is different from
the service or the user but it influences directly or indirectly service quality is
the infrastructure. This entity characterizes the service execution environment
and can be characterized by many quality attributes. For the time-being, we
have only identified three of them, namely: server failure, guaranteed messaging
requirements and security level.



Usability Usability collects all those quality attributes that can be measured
subjectively according to user feedback. It refers to the ease with which a user
can learn to operate, prepare input for, and interpret the output of the service.
This quality group contains three composite (that can be further decomposed)
and two atomic quality attributes. The definition of these attributes is given in
the table.

Quality of Use Context Services can become adaptive if they can change
their configuration, behavior and appearance based on the context, where “con-
text is any information than can characterize the situation of the entity. An
entity is a person, place or object that is considered relevant to the interaction
of a user and an application including the user and the application themselves”
[14]. So based on this definition, which is quite general, context is any infor-
mation that characterizes the service and its user, their physical and execution
environments (including the devices used) and the network that connects them.
Context information has also quality [15–17] as it depends on the way it is sensed
or derived, the time that it is produced and delivered, the level of detail and other
factors. Thus, adaptive services should be designed and executed taking also into
account the quality of the context that is delivered to them so as to be able to
make rational and realistic decisions when to adapt and how. After reviewing
the related literature in quality of context, we have identified seven (7) quality
attributes from which the most important ones are: precision (how precise is
the information), resolution (the level of detail), probability of correctness and
freshness (age of the information).

Cost Some research approaches consider cost as a service attribute that is
orthogonal to the service quality because it is related to both functional and
non-functional service attributes. However, the majority of research approaches
[1, 18, 10, 8, 9] considers cost as a service quality attribute. In addition, all re-
search approaches, at least the ones we have studied, use cost at the service
selection phase in order to select the best service according to its QoS and cost
and user’s preferences and budget. Based on the above reasons, we regard cost
as a (composite) quality attribute (and group) consisting of three (atomic) ser-
vice attributes: cost model, fixed costs and variable costs. Actually, cost can be
computed either from all atomic cost attributes or only from the fixed costs
attribute.

Other This quality category has been created to contain various quality
attributes of services that do not belong to any other category. So the contained
quality attributes may not be related to each other. For the time being, only one
quality attribute has been considered called supported standards [4, 11, 1, 10, 8, 9]
used to indicate if the service complies with standards or not. This attribute can
affect the portability of the service and its inter-operability with other services
or applications.

A quality model of a service (and its infrastructure) is the first step for
defining service quality. The second and more difficult step is to associate the
quality categories and attributes with each other modeling in this way their
quantitative and qualitative dependencies. This step is essential if we want to be



Fig. 1. Service Quality Model



able to derive more information from measurements or to evaluate the correctness
of these measurements or of quality predictions. A further step will be a definition
of a semantic, rich and extensible quality metamodel that will include all possible
concepts and their relationships and inter-dependencies required for defining and
monitoring end-to-end quality characteristics and negotiating SLAs.

3.2 Quality of infrastructure

4 Quality prediction

5 Quality Prediction

Service-based applications (SBAs) operate in highly dynamic and flexible con-
texts. Those applications should therefore be able to self-adapt to timely respond
to changes in their context or their constituent services, as well as to compen-
sate for deviations in functionality or quality. Currently, such a self-adaptation
often happens after a change or a deviation has occurred. Yet, such reactive
adaptations have the following drawbacks (cf. [19]):

– Executing faulty services can lead to unsatisfied users, can result in loss of
money (e.g., wrong bank transactions) and typically requires the execution
of additional activities (for instance, compensation actions must be planned
/ designed).

– Execution of adaptation activities takes time and thereby can reduce the
system performance (e.g., response to user input).

– It can take time before problems in the system lead to monitoring events
(e.g., time needed for the propagation of events from the infrastructure to the
business process level), thus events might arrive so late that an adaptation
of the system is not possible anymore.

As a consequence, SBAs should be able to proactively adapt to prevent the
above drawbacks. Key to proactive adaptation is to predict the future quality
(and functionality) of a SBA and to proactively respond if the prediction uncov-
ers deviations from expected quality (or functionality).

The previous section has introduced a taxonomy of quality attributes, which
are relevant for SBAs. In this section, we propose different kinds of approaches in
order to predict the different types of quality attributes. We envision two major
classes of approaches, based on two key types of quality attributes for SBAs and
services (e.g., see [?]):

– Quality of Service (QoS) attributes: QoS attributes can be measured objec-
tively and are the typical constituents of Service Level Agreements (SLAs
[?]). Examples for QoS attributes are performance, availability, ((to be com-
pleted based on taxanomy))



– Quality of Experience (QoE) attributes: QoS attributes can have a subjective
element to them and typically reflect the perception of individual or groups
of service users. Examples for QoE attributes are usability, trust, ((to be
completed based on taxanomy))

For what concerns QoS attributes, more traditional approaches can be em-
ployed in order to predict the future quality of a service-based application. Sec-
tion 5.1 sketches two ideas on how existing quality assurance techniques can be
exploited. Moreover, this section also analyzes another idea of using benchmarks
to predict the QoS of a service.

For what concerns QoE attributes, the advent of the Web 2.0 [21] provides
novel tools and platforms, which can be exploited. Examples include reputa-
tion systems (used in platforms like YouTube, Flickr, or eBay), as well as social
bookmarking tools (like Delicious, Digg and StumbleUpon). Those tools and
platforms open the door for novel ways of determining and predicting QoE at-
tributes. This is sketched in Section 5.2.

5.1 Predicting Quality of Service Attributes

Quality prediction based on testing: Testing can be considered as a means to
measure / assess the quality of a system. As an example, through performance
tests, the systems response time under different loads can be measured. In order
to extend the traditional testing techniques towards quality prediction, one idea
is to use online testing techniques, i.e. to perform testing activities in parallel to
the operation phase of service-based applications (in contrast to offline testing
which is done during the design phase). Obviously, an online test can fail; e.g.,
because a faulty service instance has been invoked during the test. This reveals
a potential problem that the service-based application can face in the future of
its operation; e.g., when the application invokes the faulty service instance. In
[Hielscher et al. 2008] an initial framework for such a use of online testing has
been presented.

Quality prediction based on model analysis: Another approach which allows
predicting the future quality of a system is to exploit models to reason on QoS
attributes during the run-time of an SBA. As an example, the approach presented
in [20] uses models, which are continuously updated during the operation of the
SBA, in order to predict violations in the future execution (states) of the system.

Quality prediction based on benchmarks Another possible strategy is to use
benchmarks as means to calculate expected performance of services in new en-
vironments. As prerequisite server side benchmarks can serve as baseline to es-
tablish a metric for the performance of the service environment. Note that these
numbers only provide a rule of thumb and provide an rough estimation for the
expected performance. In this context, one must distinguish between (i) data
centric services that depend on databases (e.g., the provision of business re-
ports) and (ii) services that perform data transformations (e.g., transformation
of ASCII text to PDF, etc.) or calculations (e.g., scoring values of companies
based on balance sheet data). In the case of data centric services, the major



part of the performance depends on the performance of the database. Database
benchmarks 5 can be used to establish a performance index for these type of
services. Services that do not use databases but do data transformation depend
on criteria that can be measured by benchmarks that focus on CPU, memory
and I/O performance 6.

5.2 Predicting Quality of Experience Attributes

Quality prediction exploiting Web 2.0 technologies: The Internet is currently
evolving towards the ”Web 2.0”, in which social networks, folksonomies, rep-
utation and rating systems play an ever more dominant role [21]. Reputation
systems attempt to rate entities (e.g., book, images, videos, etc.) based on a
collection of opinions (subjective perception). As examples, Flickr provides indi-
vidual (subjective) opinions of people about certain photos, the videos provided
by YouTube are rated by the viewers of these videos, the participants in eBay
are rated based on the experience of previous sales.

Considering the fact that in the future Internet of Services, an abundance
of services will be available and accessible over the Web, it is only natural to
assume that a rating system for these services will be put in place (cf. [?]). We
believe that this fact can be exploited to measure and predict QoE attributes, i.e.
to determine quality attributes that are strongly influenced by how the quality
of a service has been perceived by the users of that service.

In this respect, we envision exploiting techniques for aggregating individual
views into a public opinion (as has been done for the quality attributes trust and
reputation; e.g., see [22, 23]). As an example, this approach could be extended
and adapted to aggregate the individual user experience about the usability of a
service. Analyzing the change of the public opinion over time, could then support
predicting the future quality.

6 Adaptation

The quality model and quality prediction allow the assessment of services and
they are the basis for enforcing actions on the system to guarantee that users’
requirements are satisfied.

In general such actions have the goal of guaranteeing the functionalities and
quality of the system even when perturbed situations arise. In general, a self-
healing behavior is envisioned. Prediction allows acting before actual failures
occur in the system (proactive approach), while a reactive approach based on
occurred failures is adopted after failures. In the following, we define adaptation
as the general mechanism which allows reacting either in a proactive or a reactive
way, as a combination of one or more adaptation actions.

5http://www.tpc.org/
6http://www.specbench.org/



Several aspects have to be considered for adaptation, which are based on
implicit or explicit classification of error states in the system. We illustrate in
the following the principal aspects that influence decisions:

– persistence of faults: faults originating error states may be persistent, tem-
porary, or intermittent;

– context variability: systems with a variable context require an adaptive be-
havior more than in the case of stable context situations;

– origin of faults: faults may occur at the application or at the infrastructure
level;

– service evolution: services may present a be more or less well defined and
stable interface to interacting partners;

– service compositions: service can be used in isolation, or in a service compo-
sition, which can be more or less dynamic.

– OTHERS???

Concerning quality, adaptation actions can be of two main types: negotiation
and repair.

Negotiation actions allow to define or redefine the quality characteristics of
interacting services and infrastructure components with a single step or iterative
process which allows the definition of new quality thresholds which are accept-
able for all participating components in a service composition. Negotiation can
be performed at design time, in particular when a set of predefined components
participate in a composition, thus preparing the potential components in a com-
position, as proposed in [24]. In variable context and evolving services a more
dynamic approach to negotiation can be envisioned, based on on-line auctions
[?].

Repair actions are proposed to repair system errors. At the service level, the
main repair actions are substitution and retry, which may need to be executed
in a repair plan to maintain a consistent system state, involving for instance
also compensation actions[25]. Other actions have been proposed for the infras-
tructural level, mainly based on reconfiguration of services or infrastructural
components [?]. The reasons for faults at the infrastructure (e.g., Grid) level
can be manifold; the geographically widespread nature of infrastructures lead
them vulnerable to connectivity problems and the variations in the configura-
tion of different systems, resources that have unpredictable behaviour, problems
with the connecting infrastructure or systems just running out of consumable
resources (i.e., memory or disk space) are some other possible sources of failure.
When discussing the repair actions of an infrastructure, how it recovers from one
of these faults is an important factor. Thus, automated procedures may be in
place to recover from faults. For example, a task may be retried (possibly on an
alternate resource) or the task can be restarted from a checkpoint taken before
the task failed.

Decision mechanisms for applying repairs on the basis of the aspects listed
above have been proposed, including rule based approaches [?,?] or automatic
plan generation [25]. In general, only the service level is examined in such ap-
proaches, while decisions at the infrastructural level are taken independently



to manage the networked system resources. An interaction to manage quality
across levels is being proposed in [26] for energy management.

However, the complexity of such decisions might require completely new ap-
proaches in future research, since a complete description and control on all sys-
tem’s variables might result impractical. Proposed approaches include automatic
classification and learning and the application of systems theory to control the
stability of the system.

7 Concluding remarks

References

1. Ran, S.: A model for web services discovery with qos. SIGecom Exch. 4(1) (2003)
1–10

2. Tondello, G.F., Siqueira, F.: The qos-mo ontology for semantic qos modeling.
In: SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing,
Fortaleza, Ceará, Brazil, ACM (2008) 2336–2340

3. Kritikos, K., Plexousakis, D.: Semantic qos metric matching. In: ECOWS ’06:
Proceedings of the European Conference on Web Services, Zurich, Switzerland,
IEEE Computer Society (2006) 265–274

4. Anbazhagan, M., Nagarajan, A.: Understanding quality of service for web services.
IBM Developerworks website (January 2002)

5. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: WWW ’03: Proceedings of the 12th international
conference on World Wide Web, Budapest, Hungary, ACM (2003) 411–421

6. Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
Technical Report 0100, Computer Science Department, University of California,
Los Angeles, LA, USA (2001)

7. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Kluwer Academic Publishers (1997)

8. Cappiello, C.: The Quality Registry. In: Mobile Information Systems – Infrastruc-
ture and Design for Adaptivity and Flexibility. Springer-Verlag (2006) 307–317

9. Kritikos, K.: Qos-based web service description and discovery. Phd thesis, Com-
puter Science Department, University of Crete, Heraklion, Crete, Greece (2008)

10. Truong, H.L., Samborski, R., Fahringer, T.: Towards a framework for monitoring
and analyzing qos metrics of grid services. In: International Conference on e-Science
and Grid Computing, Amsterdam, The Netherlands, IEEE Computer Society Press
(December 2006)

11. Lee, K., Jeon, J., Lee, W., Jeong, S.H., Park, S.W.: Qos for web services: Re-
quirements and possible approaches. World Wide Web Consortium (W3C) note
(November 2003)

12. Sabata, B., Chatterjee, S., Davis, M., Sydir, J.J., Lawrence, T.F.: Taxomomy of
qos specifications. In: WORDS ’97: Proceedings of the 3rd Workshop on Object-
Oriented Real-Time Dependable Systems - (WORDS ’97), Washington, DC, USA,
IEEE Computer Society (1997) 100–107

13. Tian, M., Gramm, A., Nabulsi, M., Ritter, H., Schiller, J., Voigt, T.: Qos integra-
tion in web services. Gesellschaft fur Informatik DWS 2003, Doktorandenworkshop
Technologien und Anwendungen von XML (October 2003)



14. Dey, A.: Architectural support for building context-aware applications. Phd thesis,
College of Computing, Georgia Institute of Technology (December 2000)

15. Gray, P.D., Salber, D.: Modelling and using sensed context information in the
design of interactive applications. In: EHCI ’01: Proceedings of the 8th IFIP In-
ternational Conference on Engineering for Human-Computer Interaction, Toronto,
Canada, Springer-Verlag (2001) 317–336

16. Buchholz, T., Küpper, A., Schiffers, M.: Quality of context: What it is and why
we need it. In: 10th International Workshop of the HP OpenView University
Association (HPOVUA 2003), Geneva, Switzerland. (2003)

17. Sheikh, K., Wegdam, M., van Sinderen, M.J.: Quality-of-context and its use for
protecting privacy in context aware systems. Journal of Software 3(3) (March
2008) 83–93

18. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service
for workflows and web service processes. Journal of Web Semantics 1(3) (2004)
281–308

19. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A framework for proactive
self-adaptation of service-based applications based on online testing. In: Service-
Wave 2008, to be published (10-13 December 2008)

20. Gallotti, S., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Quality prediction of
service compositions through probabilistic model checking. In Becker, S., Plasil,
F., Reussner, R., eds.: Quality of Software Architectures. Models and Architectures,
4th International Conference on the Quality of Software-Architectures, QoSA 2008,
Karlsruhe, Germany, October 14-17, 2008. Proceedings. Volume 5281 of Lecture
Notes in Computer Science., Springer (2008) 119–134

21. Andersen, P.: What is Web 2.0?: ideas, technologies and implications for education.
JISC Report (2007)

22. Drago, M.L.: A reputation management framework for web services. Master’s
thesis, Politecnico di milano (2008)

23. Bianculli, D., Binder, W., Drago, M.L., Ghezzi, C.: Transparent reputation man-
agement for composite web services. In: International Conference on Web Service
(ICWS). (2008) To appear.

24. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A framework
for executing adaptive web-service processes. IEEE Software 24(6) (Nov.–Dec.
2007) 39–46

25. WS-Diamond team: DIAMOND Web Services - DIAgnosability, MONitoring and
Diagnosis. In: At your service: An overview of results of projects in the field of
service engineering of the IST program MIT Press Series on Information Systems,
MIT Book). (in press)

26. Ardagna, D., Cappiello, C., Lovera, M., Pernici, B., T.M.: Active energy-aware
management of business-process based applications. In: ServiceWave. (2008)


